SOLVABILITY AND STABILITY OF SEMILINEAR WAVE EQUATION WITH GENERAL SOURCE AND NONLINEAR BOUNDARY CONDITIONS

被引:0
|
作者
Nowakowski, Andrzej [1 ,2 ]
机构
[1] Univ Lodz, Fac Math, PL-90238 Lodz, Poland
[2] Acad Informat Technol, PL-90008 Lodz, Poland
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2012年 / 21卷 / 2-3期
关键词
CAUCHY-PROBLEM; VARIATIONAL PRINCIPLE; GLOBAL NONEXISTENCE; PARABOLIC EQUATIONS; DECAY-RATES; BLOW-UP; EXISTENCE; THEOREMS; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss solvability for the semilinear equation of the vibrating string x(tt)(t, y) - Delta x(t, y) + f(t, y, x(t, y)) = 0 in bounded domain, infinity time interval and certain type of nonlinearity on the boundary. To this effect we derive new dual variational method. Next we discuss stability of solutions with respect to initial conditions.
引用
收藏
页码:351 / 375
页数:25
相关论文
共 50 条