Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA

被引:114
作者
Hong, ERL
Shinohara, A
Bishop, DK
机构
[1] Univ Chicago, Cummings Life Sci Ctr, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA
[3] Osaka Univ, Grad Sch Sci, Dept Biol, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.1074/jbc.M105563200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dmc1 and Rad51 are eukaryotic RecA homologues that are involved in meiotic recombination. The expression of Dmc1 is limited to meiosis, whereas Rad51 is expressed in mitosis and meiosis. Dmc1 and Ptad51 have unique and overlapping functions during meiotic recombination. Here we report the purification of the Dmc1 protein from the budding yeast Saccharomyces cerevisiae and present basic characterization of its biochemical activity. The protein has a weak DNA-dependent ATPase activity and binds both single-strand DNA (ssDNA) and double-strand DNA. Electrophoretic mobility shift assays suggest that DNA binding by Dmc1 is cooperative. Dmc1 renatures linearized plasmid DNA with first order reaction kinetics and without requiring added nucleotide cofactor. In addition, Dmc1 catalyzes strand assimilation of ssDNA oligonucleotides into homologous supercoiled duplex DNA in a reaction promoted by ATP or the non-hydrolyzable ATP analogue AMP-PNP.
引用
收藏
页码:41906 / 41912
页数:7
相关论文
共 65 条
[1]   SEMIDOMINANT SUPPRESSORS OF SRS2 HELICASE MUTATIONS OF SACCHAROMYCES-CEREVISIAE MAP IN THE RAD51 GENE, WHOSE SEQUENCE PREDICTS A PROTEIN WITH SIMILARITIES TO PROKARYOTIC RECA PROTEINS [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ADJIRI, A ;
FABRE, F .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3224-3234
[2]   STABLE SYNAPSIS OF HOMOLOGOUS DNA-MOLECULES MEDIATED BY THE ESCHERICHIA-COLI RECA PROTEIN INVOLVES LOCAL EXCHANGE OF DNA STRANDS [J].
ADZUMA, K .
GENES & DEVELOPMENT, 1992, 6 (09) :1679-1694
[3]   NUCLEOTIDE-SEQUENCE AND TRANSCRIPTIONAL REGULATION OF THE YEAST RECOMBINATIONAL REPAIR GENE RAD51 [J].
BASILE, G ;
AKER, M ;
MORTIMER, RK .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3235-3246
[4]   Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro [J].
Baumann, P ;
Benson, FE ;
West, SC .
CELL, 1996, 87 (04) :757-766
[5]   Role of the human RAD51 protein in homologous recombination and double-stranded break repair [J].
Baumann, P ;
West, SC .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (07) :247-251
[6]   PURIFICATION AND CHARACTERIZATION OF THE HUMAN RAD51 PROTEIN, AN ANALOG OF ESCHERICHIA-COLI RECA [J].
BENSON, FE ;
STASIAK, A ;
WEST, SC .
EMBO JOURNAL, 1994, 13 (23) :5764-5771
[7]  
Bianco P. R., 1998, FRONT BIOSCI, V3, pD570, DOI DOI 10.2741/A304
[8]   RECA HOMOLOGS DMC1 AND RAD51 INTERACT TO FORM MULTIPLE NUCLEAR-COMPLEXES PRIOR TO MEIOTIC CHROMOSOME SYNAPSIS [J].
BISHOP, DK .
CELL, 1994, 79 (06) :1081-1092
[9]   Xrcc3 is required for assembly of Rad51 complexes in vivo [J].
Bishop, DK ;
Ear, U ;
Bhattacharyya, A ;
Calderone, C ;
Beckett, M ;
Weichselbaum, RR ;
Shinohara, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (34) :21482-21488
[10]   DMC1 - A MEIOSIS-SPECIFIC YEAST HOMOLOG OF ESCHERICHIA-COLI RECA REQUIRED FOR RECOMBINATION, SYNAPTONEMAL COMPLEX-FORMATION, AND CELL-CYCLE PROGRESSION [J].
BISHOP, DK ;
PARK, D ;
XU, LZ ;
KLECKNER, N .
CELL, 1992, 69 (03) :439-456