On a nonlinear elliptic system with symmetric coupling

被引:3
作者
Agudelo, Oscar [2 ]
Ruf, Bernhard [1 ]
Velez, Carlos [3 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Nacl Colombia Medellin, Escuela Matemat, Medellin, Colombia
关键词
Elliptic system; Lyapunov-Schmidt reduction method; Mountain Pass Theorem;
D O I
10.1016/j.na.2012.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiplicity results are proved for the nonlinear elliptic system {-Delta u + g(v) = 0 -Delta v + g(u) = 0 in Omega, u = v = 0 on partial derivative Omega, where Omega subset of R-N is a bounded domain with smooth boundary and g : R -> R is a nonlinear C-1-function which satisfies additional conditions. No assumption of symmetry on g is imposed. Extensive use is made of a global version of the Lyapunov-Schmidt reduction method due to Castro and Lazer and of symmetric versions of the Mountain Pass Theorem. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4315 / 4324
页数:10
相关论文
共 10 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1998, PITMAN MONOGRAPHS SU
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]  
CASTRO A, 1982, LECT NOTES MATH, V957, P1
[6]  
Castro A., 1979, ANN MAT PUR APPL, V120, P113
[7]  
COSSIO J, 2003, REV COLOMB MAT, V37, P25
[8]  
GILBART D, 1977, ELLIPTIC PARTIAL DIF
[9]  
RABINOWITZ PH, 1986, REGIONAL C SERIES MA, V65
[10]  
SILVA EAB, 1988, THESIS U WISCONSIN M