Exceptional sets and wavelet packets orthonormal bases

被引:3
作者
Saliani, S [1 ]
机构
[1] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
wavelet; wavelet packet; QMF orthonormal basis;
D O I
10.1007/BF01261636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a partial positive answer to a problem posed by Coifman et al. in [1]. Indeed, starting from the transfer function m0 arising from the Meyer wavelet and assuming m0=1 only on [−π/3, π/3], we provide an example of pairwise disjoint dyadic intervals of the form I(n, q)=[2qn, 2q(n+1)), (n, q)εE⊂N×Z, which cover [0, +∞) except for a set A of Hausdorff dimension equal to 1/2, and such that the corresponding wavelet packets 2q/2wn (2qx−k), kεZ, (n, q)εE⊂N×Z form an orthonormal basis of L2(R).
引用
收藏
页码:421 / 430
页数:10
相关论文
共 4 条
[1]  
[Anonymous], 1992, WAVELETS THEIR APPL
[2]  
SALIANI S, 1995, APPROXIMATION THEORY, V1, P433
[3]  
SERE E, 1994, REV MAT IBEROAM, V10, P349
[4]  
Séré E, 1995, REV MAT IBEROAM, V11, P334