MILP models for the selection of a small set of well-distributed points

被引:4
作者
D'Ambrosio, Claudia [1 ]
Nannicini, Giacomo [2 ,3 ]
Sartor, Giorgio [3 ]
机构
[1] Ecole Polytech, CNRS, LIX, UMR7161, Palaiseau, France
[2] IBM TJ Watson, Yorktown Hts, NY USA
[3] Singapore Univ Technol & Design, ESD, Singapore, Singapore
关键词
Model fitting; Mixed-integer programming; Derivative-free optimization; Experimental design; INTEGER PROGRAMMING-PROBLEMS; GLOBAL OPTIMIZATION; PERFORMANCE; DESIGNS;
D O I
10.1016/j.orl.2016.11.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Motivated by the problem of fitting a surrogate model to a set of feasible points in the context of constrained derivative-free optimization, we consider the problem of selecting a small set of points with good space-filling and orthogonality properties from a larger set of feasible points. We propose four mixed-integer linear programming models for this task and we show that the corresponding optimization problems are NP-hard. Numerical experiments show that our models consistently yield well-distributed points that, on average, help reducing the variance of model fitting errors. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2009, Research Report RR-6829
[2]  
Audze P., 1977, PROBLEMS DYNAMICS ST, V35, P104
[3]   A class of hard small 0-1 programs [J].
Cornuéjols, G ;
Dawande, M .
INFORMS JOURNAL ON COMPUTING, 1999, 11 (02) :205-210
[4]  
Danna E, 2007, LECT NOTES COMPUT SC, V4513, P280
[5]   How to select a small set of diverse solutions to mixed integer programming problems [J].
Danna, Emilie ;
Woodruff, David L. .
OPERATIONS RESEARCH LETTERS, 2009, 37 (04) :255-260
[6]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[7]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[8]  
Glover Fred, 2000, COMPUTING TOOLS MODE, P299, DOI DOI 10.1007/978-1-4615-4567-5_17
[9]   Cubic graphs [J].
Greenlaw, R ;
Petreschi, R .
ACM COMPUTING SURVEYS, 1995, 27 (04) :471-495
[10]   A radial basis function method for global optimization [J].
Gutmann, HM .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) :201-227