Constrained von Neumann inequalities

被引:22
作者
Badea, C [1 ]
Cassier, G
机构
[1] Univ Lille 1, Dept Math, UMR 8524 CNRS, F-59655 Villeneuve Dascq, France
[2] Univ Lyon 1, Inst G Desargues, UMR 5028 CNRS, F-69622 Villeurbanne, France
关键词
Hilbert space operators; (constrained) von Neumann inequalities; operator radii; inequalities for positive trigonometric polynomials;
D O I
10.1006/aima.2001.2035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivalent formulation of the von Neumann inequality states that the backward shift S* on l(2) is extremal, in the sense that if T is a Hilbert space contraction, then \\p(T)\ less than or equal to \\p(S*)\\ for each polynomial p. We discuss several results of the following type: if T is a Hilbert space contraction satisfying some constraints, then S* restricted to a suitable invariant subspace is an extremal operator. Several operator radii are used instead of the operator norm. Applications to inequalities of coefficients of rational functions positive on the torus are given. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:260 / 297
页数:38
相关论文
共 31 条
[1]  
Agler J., 1982, Integral Equ. Oper. Theory, V5, P608, DOI DOI 10.1007/BF01694057
[2]  
Agler J., 1988, SURVEY SOME RECENT R, V192, P1
[3]  
AMBROZIE C, IN PRESS J OPERATOR
[4]  
ANDO T, 1973, MICH MATH J, V20, P303
[5]  
[Anonymous], 1967, ANAL HARMONIQUE OPER
[6]  
[Anonymous], 1997, NUMERICAL RANGE
[7]  
[Anonymous], 1986, COMPLETELY BOUNDED M
[8]  
ARVESON W, 1972, ACTA MATH-UPPSALA, V128, P271, DOI 10.1007/BF02392166
[9]  
BOAS RP, 1945, DUKE MATH J, V12, P189
[10]   Contractions in von Neumann algebras [J].
Cassier, G ;
Fack, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :297-338