MULTIPLE SOLITON SOLUTIONS FOR TWO INTEGRABLE COUPLINGS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION

被引:0
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2013年 / 14卷 / 03期
关键词
integrable couplings; backlund transformations; modified Korteweg-de Vries equation; multiple soliton solutions;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we use the algebra of coupled scalars to develop two kinds of nonlinear integrable couplings of the modified Korteweg-de Vries (mKdV) equation. One of the integrable couplings of the mKdV equation gives multiple soliton solutions of distinct amplitudes, whereas the second kind gives multiple singular soliton solutions of distinct amplitudes as well. The Backlund transformation and the simplified Hirota's method will be used for this study. We show that these couplings possess multiple soliton solutions the same as the multiple soliton solutions of the mKdV equation, but differ only in the coefficients of the Backlund transformation. This difference exhibits soliton solutions with distinct amplitudes.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 20 条
[1]  
BASZAK M., 2012, APPL MATH COMPUT, V219, P1866
[2]  
Fa-Jun Y, 2012, CHINESE PHYS B, V21
[3]   Integrable couplings of C-KdV equations hierarchy with self-consistent sources associated with (sl)over-tilde(4) [J].
Yu, Fajun ;
Li, Li .
PHYSICS LETTERS A, 2009, 373 (18-19) :1632-1638
[4]   RESONANCE OF SOLITONS IN ONE DIMENSION [J].
HIROTA, R ;
ITO, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (03) :744-748
[5]   NEW FORM OF BACKLUND TRANSFORMATIONS AND ITS RELATION TO INVERSE SCATTERING PROBLEM [J].
HIROTA, R .
PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (05) :1498-1512
[6]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[7]   Exact solutions and conservation laws of a coupled integrable dispersionless system [J].
Khalique, Chaudry Masood .
FILOMAT, 2012, 26 (05) :957-964
[8]   Solitons in Plasmas: A Lie Symmetry Approach [J].
Khalique, Chaudry Masood ;
Biswas, Anjan .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) :3110-3113
[9]   Optical solitons with power law nonlinearity using Lie group analysis [J].
Khalique, Chaudry Masood ;
Biswas, Anjan .
PHYSICS LETTERS A, 2009, 373 (23-24) :2047-2049
[10]   Models of few optical cycle solitons beyond the slowly varying envelope approximation [J].
Leblond, H. ;
Mihalache, D. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 523 (02) :61-126