miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells

被引:353
作者
El Ouaamari, Abdelfattah [1 ,2 ]
Baroukh, Nadine [1 ,2 ]
Martens, Geert A. [3 ]
Lebrun, Patricia [1 ,2 ]
Pipeleers, Daniel [3 ]
van Obberghen, Emmanuel [1 ,2 ]
机构
[1] INSERM, U907, Nice, France
[2] Univ Nice Sophia Antipolis, Fac Med, Inst Genet & Signalisat Mol, IFR 50, Nice, France
[3] Free Univ Brussels, Diabet Res Ctr, Brussels, Belgium
关键词
D O I
10.2337/db07-1614
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVE-MicroRNAs are short, noncoding RNAs that regulate gene expression. We hypothesized that the phosphatidylinositol 3-kinase, (PI 3-kinase) cascade known to be important in (3-cell physiology could be regulated by microRNAs. Here, we focused on the pancreas-specific miR-375 as a potential regulator of its predicted target 3'-phosphoinositide-dependent protein kinase-1 (PDK1), and we analyzed its implication in the response of insulin-producing cells to elevation of glucose levels. RESEARCH DESIGN AND METHODS-We used insulinoma-1E cells to analyze the effects of miR-375 on PDK1 protein level and downstream signaling using Western blotting, glucose-induced insulin gene expression using quantitative RT-PCR, and DNA synthesis by measuring thymidine incorporation. Moreover, we analyzed the effect of glucose on miR-375 expression in both INS-1E cells and primary rat islets. Finally, miR-375 expression in isolated islets was analyzed in diabetic Goto-Kakizaki (GK) rats. RESULTS-We found that miR-375 directly targets PDK1 and reduces its protein level, resulting in decreased glucose-stimulatory action on insulin gene expression and DNA synthesis. Furthermore, glucose leads to a decrease in miR-375 precursor level and a concomitant increase in PDK1 protein. Importantly, regulation of miR-375 expression by glucose occurs in primary rat islets as well. Finally, miR-375 expression was found to be decreased in fed diabetic GK rat islets. CONCLUSIONS-Our findings provide evidence for a role of a pancreatic-specific microRNA, miR-375, in the regulation of PDK1, a key molecule in PI 3-kinase signaling in pancreatic beta-cells. The effects of glucose on miR-375 are compatible with the idea that miR-375 is involved in glucose regulation of insulin gene expression and beta-cell growth.
引用
收藏
页码:2708 / 2717
页数:10
相关论文
共 45 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]   Glucose infusion in mice -: A new model to induce β-cell replication [J].
Alonso, Laura C. ;
Yokoe, Takuya ;
Zhang, Pili ;
Scott, Donald K. ;
Kim, Seung K. ;
O'Donnell, Christopher P. ;
Garcia-Ocana, Adolfo .
DIABETES, 2007, 56 (07) :1792-1801
[3]   MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines [J].
Baroukh, Nadine ;
Ravier, Magalie A. ;
Loder, Merewyn K. ;
Hill, Elaine V. ;
Bounacer, Ali ;
Scharfmann, Raphael ;
Rutter, Guy A. ;
Van Obberghen, Emmanuel .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (27) :19575-19588
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi [J].
Bilanges, B ;
Stokoe, D .
BIOCHEMICAL JOURNAL, 2005, 388 :573-583
[6]   MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis [J].
Bloomston, Mark ;
Frankel, Wendy L. ;
Petrocca, Fabio ;
Volinia, Stefano ;
Alder, Hansjuerg ;
Hagan, John P. ;
Liu, Chang-Gong ;
Bhatt, Darshna ;
Taccioli, Cristian ;
Croce, Carlo M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (17) :1901-1908
[7]   β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes [J].
Butler, AE ;
Janson, J ;
Bonner-Weir, S ;
Ritzel, R ;
Rizza, RA ;
Butler, PC .
DIABETES, 2003, 52 (01) :102-110
[8]   MicroRNAs in skeletal and cardiac muscle development [J].
Callis, Thomas E. ;
Chen, Jian-Fu ;
Wan, Da-Zhi .
DNA AND CELL BIOLOGY, 2007, 26 (04) :219-225
[9]   microRNAs in vertebrate physiology and human disease [J].
Chang, Tsung-Cheng ;
Mendell, Joshua T. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2007, 8 :215-239
[10]   Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis [J].
Cheng, AM ;
Byrom, MW ;
Shelton, J ;
Ford, LP .
NUCLEIC ACIDS RESEARCH, 2005, 33 (04) :1290-1297