A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS

被引:9
作者
Bercu, Bernard [1 ,2 ]
Fraysse, Philippe [1 ,2 ]
机构
[1] Univ Bordeaux, UMR CNRS, Inst Math Bordeaux, F-33400 Talence, France
[2] INRIA Bordeaux, Team ALEA, F-33400 Talence, France
关键词
Semiparametric estimation; estimation of a shift; estimation of a regression function; asymptotic properties; SHAPE-INVARIANT MODELS; NONPARAMETRIC REGRESSION; STOCHASTIC-APPROXIMATION; NONLINEAR-REGRESSION; MAXIMUM-LIKELIHOOD; ITERATED LOGARITHM; CONVERGENCE; ALGORITHMS; LAW;
D O I
10.1214/12-AOS969
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to the parametric estimation of a shift together with the nonparametric estimation of a regression function in a semiparametric regression model. We implement a very efficient and easy to handle Robbins-Monro procedure. On the one hand, we propose a stochastic algorithm similar to that of Robbins-Monro in order to estimate the shift parameter. A preliminary evaluation of the regression function is not necessary to estimate the shift parameter. On the other hand, we make use of a recursive Nadaraya-Watson estimator for the estimation of the regression function. This kernel estimator takes into account the previous estimation of the shift parameter. We establish the almost sure convergence for both Robbins-Monro and Nadaraya-Watson estimators. The asymptotic normality of our estimates is also provided. Finally, we illustrate our semiparametric estimation procedure on simulated and real data.
引用
收藏
页码:666 / 693
页数:28
相关论文
共 40 条
[11]   Semi-parametric estimation of shifts [J].
Gamboa, Fabrice ;
Loubes, Jean-Michel ;
Maza, Elie .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :616-640
[12]  
GAPOSHKIN VF, 1974, TEOR VER PRIM, V19, P879
[13]  
Hall P, 2001, ANN STAT, V29, P624
[14]  
Hall P., 1980, Martingale Limit Theory and Its Application
[15]   ROBUST NONPARAMETRIC REGRESSION WITH SIMULTANEOUS SCALE CURVE ESTIMATION [J].
HARDLE, W ;
TSYBAKOV, AB .
ANNALS OF STATISTICS, 1988, 16 (01) :120-135
[16]   SEMIPARAMETRIC COMPARISON OF REGRESSION-CURVES [J].
HARDLE, W ;
MARRON, JS .
ANNALS OF STATISTICS, 1990, 18 (01) :63-89
[17]   A LAW OF THE ITERATED LOGARITHM FOR NONPARAMETRIC REGRESSION FUNCTION ESTIMATORS [J].
HARDLE, W .
ANNALS OF STATISTICS, 1984, 12 (02) :624-635
[18]   STRONG UNIFORM CONSISTENCY RATES FOR ESTIMATORS OF CONDITIONAL FUNCTIONALS [J].
HARDLE, W ;
JANSSEN, P ;
SERFLING, R .
ANNALS OF STATISTICS, 1988, 16 (04) :1428-1449
[19]   Semiparametric shape-invariant models for periodic data [J].
Huertgen, Holger ;
Gervini, Daniel .
JOURNAL OF APPLIED STATISTICS, 2009, 36 (10) :1055-1065
[20]   CONVERGENCE AND CONSISTENCY RESULTS FOR SELF-MODELING NONLINEAR-REGRESSION [J].
KNEIP, A ;
GASSER, T .
ANNALS OF STATISTICS, 1988, 16 (01) :82-112