High sensitivity SQUID-detection and feedback-cooling of an ultrasoft microcantilever

被引:13
作者
Vinante, A. [1 ]
Kirste, A. [2 ]
den Haan, A. [1 ]
Usenko, O. [1 ]
Wijts, G. [1 ]
Jeffrey, E. [1 ]
Sonin, P. [1 ]
Bouwmeester, D. [1 ]
Oosterkamp, T. H. [1 ]
机构
[1] Leiden Univ, Leiden Inst Phys, NL-2300 RA Leiden, Netherlands
[2] Phys Tech Bundesanstalt, D-10587 Berlin, Germany
关键词
QUANTUM GROUND-STATE; RESONANCE FORCE MICROSCOPY; LINEAR-AMPLIFIERS; NOISE;
D O I
10.1063/1.4752766
中图分类号
O59 [应用物理学];
学科分类号
摘要
We measure the motion of an ultrasoft cantilever, carrying a ferromagnetic particle, by means of a superconducting quantum interference device (SQUID). In our scheme, the cantilever motion modulates the magnetic flux in the SQUID due to the coupling with the magnetic particle. For the cantilever fundamental mode, cooled to temperatures below 100 mK, we achieve a dimensionless coupling factor as large as 0.07, displacement sensitivity of 200 fm/root Hz, and subattonewton force sensitivity. We demonstrate the outstanding combination of very low displacement and force noise by feedback-cooling the cantilever mode to an effective mode temperature of 160 mu K. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752766]
引用
收藏
页数:4
相关论文
共 26 条
[1]   Observation of a kilogram-scale oscillator near its quantum ground state [J].
Abbott, B. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Ballmer, S. ;
Bantilan, H. ;
Barish, B. C. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barton, M. A. ;
Bastarrika, M. ;
Bayer, K. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Brinkmann, M. ;
Brooks, A. ;
Brown, D. A. ;
Brunet, G. .
NEW JOURNAL OF PHYSICS, 2009, 11
[2]  
[Anonymous], 1992, Quantum Measurement
[3]   Scheme to probe the decoherence of a macroscopic object [J].
Bose, S ;
Jacobs, K ;
Knight, PL .
PHYSICAL REVIEW A, 1999, 59 (05) :3204-3210
[4]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839
[5]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[6]  
Chui B. W., 2003, 12 INT C SOL STAT SE, P1120
[7]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[8]   Cooling of a mirror by radiation pressure [J].
Cohadon, PF ;
Heidmann, A ;
Pinard, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3174-3177
[9]   QUANTUM NOISE IN LINEAR AMPLIFIERS [J].
HAUS, HA ;
MULLEN, JA .
PHYSICAL REVIEW, 1962, 128 (05) :2407-&
[10]   Sub-kelvin optical cooling of a micromechanical resonator [J].
Kleckner, Dustin ;
Bouwmeester, Dirk .
NATURE, 2006, 444 (7115) :75-78