Nanoflare reconnection events have been proposed as a mechanism for heating the corona. Parker's original suggestion was that frequent reconnection events occur in coronal loops due to the braiding of the magnetic field. Many observational studies, however, have focused on the properties of isolated transient brightenings unassociated with loops, but their cause, role, and relevance for coronal heating have not yet been established. Using Hinode SOT magnetograms and high-cadence EIS spectral data we study the relationship between chromospheric, transition region, and coronal emission and the evolution of the magnetic field. We find that hot, relatively steadily emitting coronal loops and isolated transient brightenings are both associated with magnetic flux regions that are highly dynamic. An essential difference, however, is that brightenings are typically found in regions of flux collision and cancellation whereas coronal loops are generally rooted in magnetic field regions that are locally unipolar with unmixed flux. This suggests that the type of heating (transient vs. steady) is related to the structure of the magnetic field, and that the heating in transient events may be fundamentally different than in coronal loops. This implies that they do not play an important role in heating the "quiescent" corona.