Boundary Regularity for Solutions to the Linearized Monge-Ampere Equations

被引:18
作者
Le, N. Q. [1 ]
Savin, O. [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SCALAR CURVATURE; TORIC SURFACES; METRICS;
D O I
10.1007/s00205-013-0653-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain boundary Holder gradient estimates and regularity for solutions to the linearized Monge-AmpSre equations under natural assumptions on the domain, Monge-AmpSre measures and boundary data. Our results are affine invariant analogues of the boundary Holder gradient estimates of Krylov.
引用
收藏
页码:813 / 836
页数:24
相关论文
共 21 条
[11]  
Donaldson SK, 2002, J DIFFER GEOM, V62, P289
[12]   Interior gradient estimates for solutions to the linearized Monge-Ampere equation [J].
Gutierrez, Cristian E. ;
Truyen Nguyen .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2034-2070
[13]  
Krylov NV., 1983, Izv. Akad. Nauk SSSR Ser. Mat, V47, P75
[14]  
LE N.Q., 2013, ANAL PDE IN PRESS
[15]   A fully nonlinear version of the incompressible Euler equations: The semigeostrophic system [J].
Loeper, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) :795-823
[16]  
Savin O, 2013, J AM MATH SOC, V26, P63
[17]  
SAVIN O., 2013, P AM MATH S IN PRESS
[18]  
Savin O., 2012, Adv. Lect. Math. (ALM), V21, P45
[19]   Boundary regularity for the Monge-Ampere and affine maximal surface equations [J].
Trudinger, Neil S. ;
Wang, Xu-Jia .
ANNALS OF MATHEMATICS, 2008, 167 (03) :993-1028
[20]   The affine Plateau problem [J].
Trudinger, NS ;
Wang, XJ .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) :253-289