Boundary Regularity for Solutions to the Linearized Monge-Ampere Equations

被引:18
作者
Le, N. Q. [1 ]
Savin, O. [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SCALAR CURVATURE; TORIC SURFACES; METRICS;
D O I
10.1007/s00205-013-0653-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain boundary Holder gradient estimates and regularity for solutions to the linearized Monge-AmpSre equations under natural assumptions on the domain, Monge-AmpSre measures and boundary data. Our results are affine invariant analogues of the boundary Holder gradient estimates of Krylov.
引用
收藏
页码:813 / 836
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 2008, Adv. Lect. Math. (ALM)
[3]  
Caffarelli LA, 1997, AM J MATH, V119, P423
[4]   SOME REGULARITY PROPERTIES OF SOLUTIONS OF MONGE AMPERE EQUATION [J].
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :965-969
[5]   INTERIOR W2,P ESTIMATES FOR SOLUTIONS OF THE MONGE-AMPERE EQUATION [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1990, 131 (01) :135-150
[7]   GENERALIZED LAGRANGIAN SOLUTIONS FOR ATMOSPHERIC AND OCEANIC FLOWS [J].
CULLEN, MJP ;
NORBURY, J ;
PURSER, RJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (01) :20-31
[8]  
Donaldson SK, 2008, J DIFFER GEOM, V79, P389
[9]   Constant Scalar Curvature Metrics on Toric Surfaces [J].
Donaldson, Simon K. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (01) :83-136
[10]  
Donaldson SK, 2005, COLLECT MATH, V56, P103