On a novel integrable generalization of the nonlinear Schrodinger equation

被引:144
|
作者
Lenells, J. [1 ]
Fokas, A. S. [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
SHALLOW-WATER EQUATION; CAMASSA-HOLM EQUATION; HEREDITARY SYMMETRIES; PEAKED SOLITONS;
D O I
10.1088/0951-7715/22/1/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an integrable generalization of the nonlinear Schrodinger (NLS) equation that was recently derived by one of the authors using bi-Hamiltonian methods. This equation is related to the NLS equation in the same way as the Camassa-Holm equation is related to the KdV equation. In this paper we (a) use the bi-Hamiltonian structure to write down the first few conservation laws, (b) derive a Lax pair, (c) use the Lax pair to solve the initial value problem and (d) analyse solitons.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 50 条