A diode laser based clinical diagnostic system using shifted excitation resonance Raman difference spectroscopy for the in vivo detection of ss-carotene in human skin

被引:0
作者
Sumpf, Bernd [1 ,3 ]
Braune, Marcel [1 ,3 ]
Maiwald, Martin [1 ,3 ]
Darvin, Maxim E. [2 ,4 ,5 ]
Lademann, Juergen [2 ,4 ,5 ]
Traenkle, Guenther [1 ,3 ,6 ]
机构
[1] Leibniz Inst Hochstfrequenztech, Ferdinand Braun Inst, Gustav Kirchhoff Str 4, D-12489 Berlin, Germany
[2] Charite Univ Med Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[4] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[5] Berlin Inst Hlth, Ctr Expt & Appl Cutaneous Physiol, Dept Dermatol Venereol & Allergol, Charitepl 1, D-10117 Berlin, Germany
[6] Tech Univ Berlin, Fak 4,Str 17 Juni 135, D-10623 Berlin, Germany
来源
PLASMONICS IN BIOLOGY AND MEDICINE XVII | 2020年 / 11257卷
关键词
Raman spectroscopy; shifted excitation resonance Raman difference spectroscopy; clinical diagnostic; carotenoid detection; diode lasers; second harmonic generation; MICROSYSTEM LIGHT-SOURCE; 488; NM;
D O I
10.1117/12.2554015
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Non-invasive in vivo monitoring of the antioxidant level of human skin, e.g. by measuring carotenoid marker substances, can deliver significant data on human health status and can provide diagnostic data during medical treatments. Among others, resonance Raman spectroscopy is a promising contactless tool to detect carotenoids in human skin within the necessary nanomolar concentration range. Unfortunately, laser induced fluorescence and ambient light can obscure the Raman signals even when using the resonance Raman effect and exciting the carotenoids at wavelengths around 500 nm. Here, shifted excitation resonance Raman difference spectroscopy (SERRDS) is a powerful and easy-to-use tool separating the wanted from the unwanted signals. For this purpose, a portable clinical diagnostic system including a compact Raman handheld probe and a miniaturized wavelength-tunable frequency-doubled diode laser-based 488 nm light source was developed. The diode laser can be tuned over 2 nm providing the two excitation lines with a flexible spectral distance for SERRDS, resulting fluorescence-free skin Raman spectra. For reliable and representative measurements of human skin, an excitation spot diameter of 3 mm was selected. An excitation power of 9 mW at the sample provides a power density of 1.3 mW/mm(2) meeting the laser safety regulations with a maximum permissible exposure of 20 mW/mm(2). A calibration procedure was performed using skin phantoms containing ss-carotene at selected concentrations and a limit of detection of 0.05 nmol g(-1) of ss-carotene is achieved using the 3-sigma criterion.
引用
收藏
页数:8
相关论文
共 15 条
[1]   Using Skin Carotenoids to Assess Dietary Changes in Students After 1 Academic Year of Participating in the Shaping Healthy Choices Program [J].
Beccarelli, Lori M. ;
Scherr, Rachel E. ;
Dharmar, Madan ;
Ermakov, Igor V. ;
Gellermann, Werner ;
Jahns, Lisa ;
Linnell, Jessica D. ;
Keen, Carl L. ;
Steinberg, Francene M. ;
Young, Heather M. ;
Zidenberg-Cherr, Sheri .
JOURNAL OF NUTRITION EDUCATION AND BEHAVIOR, 2017, 49 (01) :73-+
[2]   Shifted excitation resonance Raman difference spectroscopy system suitable for the quantitative in vivo detection of carotenoids in human skin [J].
Braune, Marcel ;
Maiwald, Martin ;
Darvin, Maxim E. ;
Eppich, Bernd ;
Sumpf, Bernd ;
Lademann, Juergen ;
Traenkle, Guenther .
LASER PHYSICS LETTERS, 2018, 15 (11)
[3]   Design and Realization of a Miniaturized DFB Diode Laser-Based SHG Light Source With a 2-nm Tunable Emission at 488 nm [J].
Braune, Marcel ;
Maiwald, Martin ;
Eppich, Bernd ;
Brox, Olaf ;
Ginolas, Arnim ;
Sumpf, Bernd ;
Traenkle, Guenther .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2017, 7 (05) :720-725
[4]   Dataset on the absorption characteristics of extracted phytoplankton pigments [J].
Clementson, Lesley A. ;
Wojtasiewicz, Bozena .
DATA IN BRIEF, 2019, 24
[5]   Non-invasive Raman spectroscopic detection of carotenoids in human skin [J].
Hata, TR ;
Scholz, TA ;
Ermakov, IV ;
McClane, RW ;
Khachik, F ;
Gellermann, W ;
Pershing, LK .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2000, 115 (03) :441-448
[6]   In vivo detection of changes in cutaneous carotenoids after chemotherapy using shifted excitation resonance Raman difference and fluorescence spectroscopy [J].
Jung, Sora ;
Darvin, Maxim E. ;
Schleusener, Johannes ;
Thiede, Gisela ;
Lademann, Juergen ;
Braune, Marcel ;
Maiwald, Martin ;
Sumpf, Bernd ;
Traenkle, Guenther ;
Kutzer, Dunja ;
Elban, Felia ;
Fuss, Harald .
SKIN RESEARCH AND TECHNOLOGY, 2020, 26 (02) :301-307
[7]   Non-Invasive Spectroscopic Determination of the Antioxidative Status of Gravidae and Neonates [J].
Lademann, Hanne ;
Gerber, Bernd ;
Olbertz, Dirk M. ;
Darvin, Maxim E. ;
Stauf, Leonie ;
Ueberholz, Kirsten ;
Heinrich, Verena ;
Lademann, Juergen ;
Briese, Volker .
SKIN PHARMACOLOGY AND PHYSIOLOGY, 2015, 28 (04) :189-195
[8]  
Lee BN, 2016, ANTICANCER RES, V36, P4089
[9]   Microsystem Light Source at 488 nm for Shifted Excitation Resonance Raman Difference Spectroscopy [J].
Maiwald, Martin ;
Schmidt, Heinar ;
Sumpf, Bernd ;
Guether, Reiner ;
Erbert, Goetz ;
Kronfeldt, Heinz-Detlef ;
Traenkle, Guenther .
APPLIED SPECTROSCOPY, 2009, 63 (11) :1283-1287
[10]   Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy [J].
Maiwald, Martin ;
Jedrzejczyk, Daniel ;
Sahm, Alexander ;
Paschke, Katrin ;
Guether, Reiner ;
Sumpf, Bernd ;
Erbert, Goetz ;
Traenkle, Guenther .
OPTICS LETTERS, 2009, 34 (02) :217-219