3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering

被引:73
|
作者
Yu, Xiaoling [1 ]
Zhang, Tian [1 ,2 ]
Li, Yuan [1 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
关键词
3D printing; bioprinting; hydrogel; polyester; peripheral nerve regeneration; CONDUCTIVE POLYMERS; STEM-CELLS; ELECTRICAL-STIMULATION; POLYURETHANE HYDROGEL; FUNCTIONAL RECOVERY; COMPOSITE HYDROGEL; GUIDANCE CONDUITS; REGENERATION; SCAFFOLDS; DIFFERENTIATION;
D O I
10.3390/polym12081637
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fabrication of nerve conduits for perfectly repairing or replacing damaged peripheral nerve is an urgent demand worldwide, but it is also a formidable clinical challenge. In the last decade, with the rapid development of manufacture technologies, 3D printing and bioprinting have been becoming remarkable stars in the field of neural engineering. In this review, we explore that the biomaterial inks (hydrogels, thermoplastic, and thermoset polyesters and composite) and bioinks have been selected for 3D printing and bioprinting of peripheral nerve conduits. This review covers 3D manufacturing technologies, including extrusion printing, inkjet printing, stereolithography, and bioprinting with inclusion of cells, bioactive molecules, and drugs. Finally, an outlook on the future directions of 3D printing and 4D printing in customizable nerve therapies is presented.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Bio 3D printing for tissue engineering
    Park, Chan Hum
    TISSUE ENGINEERING PART A, 2022, 28 : 120 - 120
  • [32] 3D PRINTING TECHNOLOGIES FOR TISSUE ENGINEERING
    Lin, Weibin
    Peng, Qingjin
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2014, VOL 4, 2014,
  • [33] 3D Printing for Tissue Engineering Applications
    Hacioglu, Askican
    Yilmazer, Hakan
    Ustundag, Cem Bulent
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2018, 21 (01): : 221 - 227
  • [34] Advances in 3D Printing for Tissue Engineering
    Zaszczynska, Angelika
    Moczulska-Heljak, Maryla
    Gradys, Arkadiusz
    Sajkiewicz, Pawel
    MATERIALS, 2021, 14 (12)
  • [35] 3D printing for tissue engineering in otolaryngology
    Di Gesu, Roberto
    Acharya, Abhinav P.
    Jacobs, Ian
    Gottardi, Riccardo
    CONNECTIVE TISSUE RESEARCH, 2020, 61 (02) : 117 - 136
  • [36] Cryogenic 3D printing for tissue engineering
    Adamkiewicz, Michal
    Rubinsky, Boris
    CRYOBIOLOGY, 2015, 71 (03) : 518 - 521
  • [37] 3D printing and bioprinting in urology
    Liu, Kun
    Hu, Nan
    Yu, Zhihai
    Zhang, Xinzhou
    Ma, Hualin
    Qu, Huawei
    Ruan, Changshun
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 325 - 342
  • [38] Trends and advances in silk based 3D printing/bioprinting towards cartilage tissue engineering and regeneration
    Singh, Yogendra Pratap
    Bandyopadhyay, Ashutosh
    Dey, Souradeep
    Bhardwaj, Nandana
    Mandal, Biman B.
    PROGRESS IN BIOMEDICAL ENGINEERING, 2024, 6 (02):
  • [39] Contemporary standpoint and future of 3D bioprinting in tissue/organs printing
    Reddy, Vundrala Sumedha
    Ramasubramanian, Brindha
    Telrandhe, Vedant Mohan
    Ramakrishna, Seeram
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2023, 27
  • [40] 3D Bioprinting Strategies for Articular Cartilage Tissue Engineering
    Park, Do Young
    Kim, Seon-Hwa
    Park, Sang-Hyug
    Jang, Ji Su
    Yoo, James J.
    Lee, Sang Jin
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (07) : 1883 - 1893