Differential Harnack Inequalities Under a Coupled Ricci Flow

被引:6
作者
Wang, Lin Feng [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
关键词
Ricci flow; Differential inequality; Conjugate heat equation; Harnack inequality;
D O I
10.1007/s11040-012-9115-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove several differential Harnack inequalities under a coupled Ricci flow. As applications, we get Harnack inequalities for positive solutions of backward heat-type equations with potentials under the coupled Ricci flow. We also derive Perelman's differential Harnack inequality for fundamental solution of the conjugate heat equation under the Ricci flow.
引用
收藏
页码:343 / 360
页数:18
相关论文
共 17 条
[1]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[2]   Differential Harnack estimates for backward heat equations with potentials under the Ricci flow [J].
Cao, Xiaodong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1024-1038
[3]   Rigidity of quasi-Einstein metrics [J].
Case, Jeffrey ;
Shu, Yu-Jen ;
Wei, Guofang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) :93-100
[4]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
[5]   A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow [J].
Kuang, Shilong ;
Zhang, Qi S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1008-1023
[6]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[7]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361
[8]  
List B., 2005, THESIS AER POSTDAM
[9]   Some geometric properties of the Bakry-Emery-Ricci tensor [J].
Lott, J .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :865-883
[10]  
Muller R., 2009, The Ricci flow coupled with harmonic map heat flow