DISCRETE GROUP ACTIONS AND GENERALIZED REAL BOTT MANIFOLDS

被引:0
作者
Yu, Li [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
[3] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
discrete group; generalized real Bott manifold; real toric manifold; binary matrix; small cover; CLASSIFICATION; RIGIDITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of discrete group actions on the Euclidean space. In particular, we will investigate when the orbit spaces of such group actions are closed manifolds. The answer turns out to be a class of real toric manifolds called generalized real Bott manifolds which are the total spaces of some kind of iterated real projective space bundles. This relation provides a new viewpoint on generalized real Bott manifolds which might be useful for the future study.
引用
收藏
页码:1289 / 1303
页数:15
相关论文
共 12 条
[1]  
Choi S., 2010, ARXIV10064658
[2]  
Choi S, 2010, OSAKA J MATH, V47, P109
[3]  
CONNER PE, 1979, LECT NOTES MATH, V738
[5]   CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS [J].
DAVIS, MW ;
JANUSZKIEWICZ, T .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :417-451
[6]   ON CLASSIFICATION OF O(N)-MANIFOLDS [J].
JANICH, K .
MATHEMATISCHE ANNALEN, 1968, 176 (01) :53-&
[7]  
Kamishima Y, 2009, CONTEMP MATH, V501, P103
[8]   Cohomological rigidity of real Bott manifolds [J].
Kamishima, Yoshinobu ;
Masuda, Mikiya .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (04) :2479-2502
[9]   Semifree circle actions, Bott towers and quasitoric manifolds [J].
Masuda, M. ;
Panov, T. E. .
SBORNIK MATHEMATICS, 2008, 199 (7-8) :1201-1223
[10]  
Masuda M, 2008, CONTEMP MATH, V460, P273