Directing Silicon-Graphene Self-Assembly as a Core/Shell Anode for High-Performance Lithium-Ion Batteries

被引:146
作者
Zhu, Yuanhua [1 ]
Liu, Wen [2 ]
Zhang, Xinyue [1 ]
He, Jinchao [1 ,2 ]
Chen, Jitao
Wang, Yapei [1 ]
Cao, Tingbing
机构
[1] Renmin Univ China, Dept Chem, Beijing 100872, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
FACILE SYNTHESIS; ENERGY-STORAGE; NANOPARTICLES; SHEETS; NANOCOMPOSITE; NANOSPHERES; CATHODE; GROWTH; ARRAYS; DEVICE;
D O I
10.1021/la304371d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is great interest in utilization of silicon-containing nanostructures as anode materials for lithium-ion batteries but usually limited by manufacturing cost, their intrinsic low electric conductivity, and large volume changes during cycling. Here we present a facile process to fabricate graphene-wrapped silicon nanowires (GNS@Si NWs) directed by electrostatic self-assembly. The highly conductive and mechanical flexible graphene could partially accommodate the large volume change associated with the conversion reaction and also contributed to the enhanced electronic conductivity. The as-prepared GNS@Si NWs delivered a reversible capacity of 1648 mAh.g(-1) with an initial Coulombic efficiency as high as 80%. Moreover, capacity remained 1335 mAh.g(-1) after 80 cycles at a current of 200 mA.g(-1), showing significantly improved electrochemical performance in terms of rate capability and cycling performance.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 49 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[3]   Amorphous silicon as a possible anode material for Li-ion batteries [J].
Bourderau, S ;
Brousse, T ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 1999, 81 :233-236
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries [J].
Cao, Fei-Fei ;
Deng, Jun-Wen ;
Xin, Sen ;
Ji, Heng-Xing ;
Schmidt, Oliver G. ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2011, 23 (38) :4415-+
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[8]   A Functionally Integrated Device for Effective and Facile Oil Spill Cleanup [J].
Cheng, Mengjiao ;
Gao, Yongfeng ;
Guo, Xianpeng ;
Shi, Zhaoyuan ;
Chen, Jian-feng ;
Shi, Feng .
LANGMUIR, 2011, 27 (12) :7371-7375
[9]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935