Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15 000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm(3). The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexible SCs.
引用
收藏
页码:5376 / 5381
页数:6
相关论文
共 37 条
[1]
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data