Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy

被引:12
作者
Bae, S-S [1 ]
Prokopuk, N. [1 ,2 ]
Quitoriano, N. J. [3 ]
Adams, S. M. [1 ]
Ragan, R. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
[2] NAVAIR Res Dept, China Lake, CA 93555 USA
[3] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; SILICON NANOWIRES; ULTRAHIGH-VACUUM; WORK FUNCTION; SOLAR-CELLS; SURFACE; RESOLUTION; SEMICONDUCTORS; PERFORMANCE; CATALYST;
D O I
10.1088/0957-4484/23/40/405706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Si nanowires (NWs) integrated in a field effect transistor device structure are characterized using scanning electron (SEM), atomic force, and scanning Kelvin probe force (KPFM) microscopy. Reactive ion etching (RIE) and vapor-liquid-solid (VLS) growth were used to fabricate NWs between predefined electrodes. Characterization of Si NWs identified defects and/or impurities that affect the surface electronic structure. RIE NWs have defects that both SEM and KPFM analysis associate with a surface contaminant as well as defects that have a voltage dependent response indicating impurity states in the energy bandgap. In the case of VLS NWs, even after aqua regia, Au impurity levels are found to induce impurity states in the bandgap. KPFM data, when normalized to the oxide-capacitance response, also identify a subset of VLS NWs with poor electrical contact due to nanogaps and short circuits when NWs cross that is not observed in AFM images or in current-voltage measurements when NWs are connected in parallel across electrodes. The experiments and analysis presented outline a systematic method for characterizing a broad array of nanoscale systems under device operation conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantitative AC - Kelvin Probe Force Microscopy
    Kohl, Dominik
    Mesquida, Patrick
    Schitter, Georg
    MICROELECTRONIC ENGINEERING, 2017, 176 : 28 - 32
  • [22] Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation
    Miyahara, Yoichi
    Topple, Jessica
    Schumacher, Zeno
    Grutter, Peter
    PHYSICAL REVIEW APPLIED, 2015, 4 (05):
  • [23] Noncontact atomic force and Kelvin probe force microscopy on MgO(100) and MgO(100)-supported Ba
    Pang, Chi Lun
    Sasahara, Akira
    Onishi, Hiroshi
    SURFACE SCIENCE, 2016, 650 : 76 - 82
  • [24] Surface potential images of polycrystalline organic semiconductors obtained by Kelvin probe force microscopy
    Huang, Haichao
    Wang, Haibo
    Zhang, Jidong
    Yan, Donghang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 95 (01): : 125 - 130
  • [25] Force-gradient sensitive Kelvin probe force microscopy by dissipative electrostatic force modulation
    Miyahara, Yoichi
    Grutter, Peter
    APPLIED PHYSICS LETTERS, 2017, 110 (16)
  • [26] Electrical Characteristics of a Carbon Nanotube-Functionalized Probe for Kelvin Probe Force Microscopy
    Li, Xin
    Hu, Xiao
    Liu, Mengxi
    Sun, Lianfeng
    Qiu, Xiaohui
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (51) : 28261 - 28266
  • [27] Force gradient sensitive detection in lift-mode Kelvin probe force microscopy
    Ziegler, Dominik
    Stemmer, Andreas
    NANOTECHNOLOGY, 2011, 22 (07)
  • [28] Reconstruction of surface potential from Kelvin probe force microscopy images
    Cohen, G.
    Halpern, E.
    Nanayakkara, S. U.
    Luther, J. M.
    Held, C.
    Bennewitz, R.
    Boag, A.
    Rosenwaks, Y.
    NANOTECHNOLOGY, 2013, 24 (29)
  • [29] DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy
    Richards, David N.
    Zemlyanov, Dmitry Y.
    Asrar, Rafay M.
    Chokshi, Yena Y.
    Cook, Emily M.
    Hinton, Thomas J.
    Lu, Xinran
    Nguyen, Viet Q.
    Patel, Neil K.
    Usher, Jonathan R.
    Vaidyanathan, Sriram
    Yeung, David A.
    Ivanisevic, Albena
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (36) : 15486 - 15490
  • [30] AFM tip characterization by Kelvin probe force microscopy
    Barth, C.
    Hynninen, T.
    Bieletzki, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Heiz, U.
    NEW JOURNAL OF PHYSICS, 2010, 12