Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy

被引:12
作者
Bae, S-S [1 ]
Prokopuk, N. [1 ,2 ]
Quitoriano, N. J. [3 ]
Adams, S. M. [1 ]
Ragan, R. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
[2] NAVAIR Res Dept, China Lake, CA 93555 USA
[3] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; SILICON NANOWIRES; ULTRAHIGH-VACUUM; WORK FUNCTION; SOLAR-CELLS; SURFACE; RESOLUTION; SEMICONDUCTORS; PERFORMANCE; CATALYST;
D O I
10.1088/0957-4484/23/40/405706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Si nanowires (NWs) integrated in a field effect transistor device structure are characterized using scanning electron (SEM), atomic force, and scanning Kelvin probe force (KPFM) microscopy. Reactive ion etching (RIE) and vapor-liquid-solid (VLS) growth were used to fabricate NWs between predefined electrodes. Characterization of Si NWs identified defects and/or impurities that affect the surface electronic structure. RIE NWs have defects that both SEM and KPFM analysis associate with a surface contaminant as well as defects that have a voltage dependent response indicating impurity states in the energy bandgap. In the case of VLS NWs, even after aqua regia, Au impurity levels are found to induce impurity states in the bandgap. KPFM data, when normalized to the oxide-capacitance response, also identify a subset of VLS NWs with poor electrical contact due to nanogaps and short circuits when NWs cross that is not observed in AFM images or in current-voltage measurements when NWs are connected in parallel across electrodes. The experiments and analysis presented outline a systematic method for characterizing a broad array of nanoscale systems under device operation conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions
    Zahmatkeshsaredorahi, Amirhossein
    Jakob, Devon S.
    Xu, Xiaoji G.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (24) : 9813 - 9827
  • [2] Quantitative Kelvin probe force microscopy of current-carrying devices
    Fuller, Elliot J.
    Pan, Deng
    Corso, Brad L.
    Gul, O. Tolga
    Gomez, Jose R.
    Collins, Philip G.
    APPLIED PHYSICS LETTERS, 2013, 102 (08)
  • [3] Kelvin probe force microscopy in liquid using electrochemical force microscopy
    Collins, Liam
    Jesse, Stephen
    Kilpatrick, Jason I.
    Tselev, Alexander
    Okatan, M. Baris
    Kalinin, Sergei V.
    Rodriguez, Brian J.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 201 - 214
  • [4] Open-loop band excitation Kelvin probe force microscopy
    Guo, Senli
    Kalinin, Sergei V.
    Jesse, Stephen
    NANOTECHNOLOGY, 2012, 23 (12)
  • [5] Surface Potential Analysis of Nanoscale Biomaterials and Devices Using Kelvin Probe Force Microscopy
    Lee, Hyungbeen
    Lee, Wonseok
    Lee, Jeong Hoon
    Yoon, Dae Sung
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [6] On the deconvolution of Kelvin probe force microscopy data
    Bluemel, A.
    Plank, H.
    Klug, A.
    Fisslthaler, E.
    Sezen, M.
    Grogger, W.
    List, E. J. W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05)
  • [7] Kelvin probe force microscopy for local characterisation of active nanoelectronic devices
    Wagner, Tino
    Beyer, Hannes
    Reissner, Patrick
    Mensch, Philipp
    Riel, Heike
    Gotsmann, Bernd
    Stemmer, Andreas
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 2193 - 2206
  • [8] Pulsed Force Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Xu, Xiaoji G.
    ACS NANO, 2020, 14 (04) : 4839 - 4848
  • [9] Kelvin probe force microscopy imaging using carbon nanotube probe
    Takahashi, S
    Kishida, T
    Akita, S
    Nakayama, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (6B): : 4314 - 4316
  • [10] Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy
    Schulz, Fabian
    Ritala, Juha
    Krejci, Ondrej
    Seitsonen, Ari Paavo
    Foster, Adam S.
    Liljeroth, Peter
    ACS NANO, 2018, 12 (06) : 5274 - 5283