The involvement of the N-terminal PHR domain of Arabidopsis cryptochromes in mediating light signaling

被引:5
作者
Wang, Wenxiu [1 ]
Mao, Zhilei [1 ]
Guo, Tongtong [1 ]
Kou, Shuang [1 ]
Yang, Hong-Quan [1 ]
机构
[1] Shanghai Normal Univ, Coll Life Sci, Shanghai Key Lab Plant Mol Sci, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Light signaling; Cryptochromes; Photomorphogenesis; Phytohormone signaling; PHYTOCHROME-INTERACTING FACTOR; RESPONSIVE GENE-EXPRESSION; BOX PROTEIN TIR1; COP1; E3; LIGASE; PLANT-GROWTH; RECEPTOR KINASE; STOMATAL DEVELOPMENT; DEPENDENT INTERACTION; FLORAL INITIATION; TRANSCRIPTION;
D O I
10.1007/s42994-021-00044-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Light is a key environmental cue that fundamentally regulates all aspects of plant growth and development, which is mediated by the multiple photoreceptors including the blue light photoreceptors cryptochromes (CRYs). In Arabidopsis, there are two well-characterized homologous CRYs, CRY1 and CRY2. Whereas CRYs are flavoproteins, they lack photolyase activity and are characterized by an N-terminal photolyase-homologous region (PHR) domain and a C-terminal extension domain. It has been established that the C-terminal extension domain of CRYs is involved in mediating light signaling through direct interactions with the master negative regulator of photomorphogenesis, COP1. Recent studies have revealed that the N-terminal PHR domain of CRYs is also involved in mediating light signaling. In this review, we mainly summarize and discuss the recent advances in CRYs signaling mediated by the N-terminal PHR domain, which involves the N-terminal PHR domain-mediated dimerization/oligomerization of CRYs and physical interactions with the pivotal transcription regulators in light and phytohormone signaling.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 109 条
[1]   MUTATIONS THROUGHOUT AN ARABIDOPSIS BLUE-LIGHT PHOTORECEPTOR IMPAIR BLUE-LIGHT-RESPONSIVE ANTHOCYANIN ACCUMULATION AND INHIBITION OF HYPOCOTYL ELONGATION [J].
AHMAD, M ;
LIN, CT ;
CASHMORE, AR .
PLANT JOURNAL, 1995, 8 (05) :653-658
[2]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[3]   Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1 [J].
Bouly, JP ;
Giovani, B ;
Djamei, A ;
Mueller, M ;
Zeugner, A ;
Dudkin, EA ;
Batschauer, A ;
Ahmad, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (14) :2921-2928
[4]   Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana [J].
Brautigam, CA ;
Smith, BS ;
Ma, ZQ ;
Palnitkar, M ;
Tomchick, DR ;
Machius, M ;
Deisenhofer, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12142-12147
[5]  
Villalobos LIAC, 2012, NAT CHEM BIOL, V8, P477, DOI [10.1038/NCHEMBIO.926, 10.1038/nchembio.926]
[6]  
CHORY J, 1991, PLANT CELL, V3, P445, DOI 10.1105/tpc.3.5.445
[7]   A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development [J].
Clouse, SD ;
Langford, M ;
McMorris, TC .
PLANT PHYSIOLOGY, 1996, 111 (03) :671-678
[8]   Structures of Drosophila Cryptochrome and Mouse Cryptochrome1 Provide Insight into Circadian Function [J].
Czarna, Anna ;
Berndt, Alex ;
Singh, Hari Raj ;
Grudziecki, Astrid ;
Ladurner, Andreas G. ;
Timinszky, Gyula ;
Kramer, Achim ;
Wolf, Eva .
CELL, 2013, 153 (06) :1394-1405
[9]   COP1 - A REGULATORY LOCUS INVOLVED IN LIGHT-CONTROLLED DEVELOPMENT AND GENE-EXPRESSION IN ARABIDOPSIS [J].
DENG, XW ;
CASPAR, T ;
QUAIL, PH .
GENES & DEVELOPMENT, 1991, 5 (07) :1172-1182
[10]   The F-box protein TIR1 is an auxin receptor [J].
Dharmasiri, N ;
Dharmasiri, S ;
Estelle, M .
NATURE, 2005, 435 (7041) :441-445