Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space

被引:3
作者
Feng, Youling [3 ,4 ]
Cao, Yang [5 ]
Wang, Haijun [1 ,2 ]
机构
[1] Jilin Univ, Ctr Theoret Phys, Changchun 130012, Peoples R China
[2] Jilin Univ, Sch Phys, Changchun 130012, Peoples R China
[3] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[4] Jilin Univ Finance & Econ, Dept Appl Math, Changchun 130117, Peoples R China
[5] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
D O I
10.1063/1.3688625
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schrodinger equation in quaternionic quantum mechanics. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688625]
引用
收藏
页数:12
相关论文
共 23 条
[1]  
ADLER SL, 1986, COMMUN MATH PHYS, V104, P611, DOI 10.1007/BF01211069
[2]  
[Anonymous], LOGICO ALGEBRAIC APP
[3]  
Au-Yeung Y., 1984, Linear Multilinear Algebra, V16, P93
[4]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[5]   Alternative descriptions in quaternionic quantum mechanics [J].
Blasi, A ;
Scolarici, G ;
Solombrino, L .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)
[6]  
Brenner J.L., 1951, Pacific Journal of Mathematics, V1, P329
[7]   OBSERVABILITY OF QUATERNIONIC QUANTUM-MECHANICS [J].
DAVIES, AJ ;
MCKELLAR, BHJ .
PHYSICAL REVIEW A, 1992, 46 (07) :3671-3675
[8]  
De Leo S, 2000, J PHYS A-MATH GEN, V33, P2971, DOI 10.1088/0305-4470/33/15/306
[9]  
Dirac P.A.M., 1981, The principles of quantum mechanics
[10]   FOUNDATIONS OF QUATERNION QUANTUM MECHANICS [J].
FINKELSTEIN, D ;
JAUCH, JM ;
SPEISER, D ;
SCHIMINO.S .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (02) :207-&