Chromosomal locus tracking with proper accounting of static and dynamic errors

被引:61
作者
Backlund, Mikael P. [1 ]
Joyner, Ryan [2 ]
Moerner, W. E. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Cell & Dev Biol, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 06期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SINGLE-PARTICLE TRACKING; POINT-SPREAD FUNCTION; MOLECULE TRACKING; ANOMALOUS DIFFUSION; LOCALIZATION ANALYSIS; CLASS-II; SUBDIFFUSION; MICROSCOPY; MEMBRANE; MOVEMENT;
D O I
10.1103/PhysRevE.91.062716
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object's motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics ("static error") and motion blur due to finite exposure time ("dynamic error") on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors.
引用
收藏
页数:12
相关论文
共 57 条
[1]   Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope [J].
Backlund, Mikael P. ;
Joyner, Ryan ;
Weis, Karsten ;
Moerner, W. E. .
MOLECULAR BIOLOGY OF THE CELL, 2014, 25 (22) :3619-3629
[2]   Statistics of camera-based single-particle tracking [J].
Berglund, Andrew J. .
PHYSICAL REVIEW E, 2010, 82 (01)
[3]   Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells [J].
Bronstein, I. ;
Israel, Y. ;
Kepten, E. ;
Mai, S. ;
Shav-Tal, Y. ;
Barkai, E. ;
Garini, Y. .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)
[4]   Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: A FARIMA approach [J].
Burnecki, K. ;
Muszkieta, M. ;
Sikora, G. ;
Weron, A. .
EPL, 2012, 98 (01)
[5]   Universal Algorithm for Identification of Fractional Brownian Motion. A Case of Telomere Subdiffusion [J].
Burnecki, Krzysztof ;
Kepten, Eldad ;
Janczura, Joanna ;
Bronshtein, Irena ;
Garini, Yuval ;
Weron, Aleksander .
BIOPHYSICAL JOURNAL, 2012, 103 (09) :1839-1847
[6]   SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope [J].
Cabal, Ghislain G. ;
Genovesio, Auguste ;
Rodriguez-Navarro, Susana ;
Zimmer, Christophe ;
Gadal, Olivier ;
Lesne, Annick ;
Buc, Henri ;
Feuerbach-Fournier, Frank ;
Olivo-Marin, Jean-Christophe ;
Hurt, Eduard C. ;
Nehrbass, Ulf .
NATURE, 2006, 441 (7094) :770-773
[7]   Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization [J].
Casolari, JM ;
Brown, CR ;
Komili, S ;
West, J ;
Hieronymus, H ;
Silver, PA .
CELL, 2004, 117 (04) :427-439
[8]  
Cohen A., 2006, THESIS STANFORD U
[9]   Probing microscopic origins of confined subdiffusion by first-passage observables [J].
Condamin, S. ;
Tejedor, V. ;
Voituriez, R. ;
Benichou, O. ;
Klafter, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (15) :5675-5680
[10]   Ergodic properties of fractional Brownian-Langevin motion [J].
Deng, Weihua ;
Barkai, Eli .
PHYSICAL REVIEW E, 2009, 79 (01)