Interferometric Scattering Enables Fluorescence-Free Electrokinetic Trapping of Single Nanoparticles in Free Solution

被引:22
作者
Squires, Allison H. [1 ]
Lavania, Abhijit A. [1 ,2 ]
Dahlberg, Peter D. [1 ]
Moerner, W. E. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
关键词
Interferometric scattering; single-nanoparticle; single-molecule; anti-Brownian electrokinetic trap; ABEL trap; CORRELATION SPECTROSCOPY; 3-DIMENSIONAL TRACKING; PARTICLE TRACKING; MOLECULE; DYNAMICS; MICROSCOPE; COMPLEXES; OBJECTS;
D O I
10.1021/acs.nanolett.9b01514
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anti-Brownian traps confine single particles in free solution by closed-loop feedback forces that directly counteract Brownian motion. Extended-duration measurements on trapped objects allow detailed characterization of photophysical and transport properties as well as observation of infrequent or rare dynamics. However, this approach has been generally limited to particles that can be tracked by fluorescence emission. Here we present the Interferometric Scattering Anti-Brownian ELectrokinetic (ISABEL) trap, which uses interferometric scattering rather than fluorescence to monitor particle position. By decoupling the ability to track (and therefore trap) a particle from collection of its spectroscopic data, the ISABEL trap enables confinement and extended study of single particles that do not fluoresce, only weakly fluoresce, or exhibit intermittent fluorescence or photobleaching. This new technique significantly expands the range of nanoscale objects that may be investigated at the single-particle level in free solution.
引用
收藏
页码:4112 / 4117
页数:6
相关论文
共 62 条
[31]   Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution [J].
King, Jason K. ;
Canfield, Brian K. ;
Davis, Lloyd M. .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[32]   Geometry-induced electrostatic trapping of nanometric objects in a fluid [J].
Krishnan, Madhavi ;
Mojarad, Nassiredin ;
Kukura, Philipp ;
Sandoghdar, Vahid .
NATURE, 2010, 467 (7316) :692-U75
[33]   Imaging a Single Quantum Dot When It Is Dark [J].
Kukura, P. ;
Celebrano, M. ;
Renn, A. ;
Sandoghdar, V. .
NANO LETTERS, 2009, 9 (03) :926-929
[34]   High-speed nanoscopic tracking of the position and orientation of a single virus [J].
Kukura, Philipp ;
Ewers, Helge ;
Mueller, Christian ;
Renn, Alois ;
Helenius, Ari ;
Sandoghdar, Vahid .
NATURE METHODS, 2009, 6 (12) :923-U85
[35]   Optical Feedback Tweezers [J].
Kumar, Avinash ;
Bechhofer, John .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XV, 2018, 10723
[36]   Three-dimensional tracking of individual quantum dots [J].
Lessard, Guillaume A. ;
Goodwin, Peter M. ;
Werner, James H. .
APPLIED PHYSICS LETTERS, 2007, 91 (22)
[37]   3-D particle tracking in a two-photon microscope: Application to the study of molecular dynamics in cells [J].
Levi, V ;
Ruan, QQ ;
Gratton, E .
BIOPHYSICAL JOURNAL, 2005, 88 (04) :2919-2928
[38]   Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins [J].
Liebel, Matz ;
Hugall, James T. ;
van Hulst, Niek F. .
NANO LETTERS, 2017, 17 (02) :1277-1281
[39]   FLUORESCENCE CORRELATION SPECTROSCOPY .2. EXPERIMENTAL REALIZATION [J].
MAGDE, D ;
ELSON, EL ;
WEBB, WW .
BIOPOLYMERS, 1974, 13 (01) :29-61
[40]   Visualizing Single-Cell Secretion Dynamics with Single-Protein Sensitivity [J].
McDonald, Matthew P. ;
Gemeinhardt, Andre ;
Koenig, Katharina ;
Piliarik, Marek ;
Schaffer, Stefanie ;
Voelkl, Simon ;
Aigner, Michael ;
Mackensen, Andreas ;
Sandoghdar, Vahid .
NANO LETTERS, 2018, 18 (01) :513-519