Cathode supported tubular solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3 electrocatalysts

被引:7
作者
Wu, Liuer [1 ,2 ]
Zhao, Ling [1 ,2 ]
Zhan, Zhongliang [1 ,2 ,3 ]
Xia, Changrong [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell; Tubular SOFC; Cathode substrate; Yttria stabilized zirconia; LSCF; SURFACE EXCHANGE COEFFICIENTS; LAYER HOLLOW FIBERS; PERFORMANCE; FABRICATION; ANODE; SOFC; ELECTROLYTE; MICROSTRUCTURE; INFILTRATION; STABILITY;
D O I
10.1016/j.jpowsour.2014.05.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tubular solid oxide fuel cells (SOFCs) are developed with thick (similar to 0.50 mm) La0.6Sr0.4Co0.2Fe0.5O3 (LSCF)-(Y2O3)(0.08)(ZrO2)(0.92) (YSZ) cathode substrates and thin (6.9 mu m) film YSZ electrolytes. LSCF is introduced to the thick porous YSZ substrate by impregnating technique, resulting in nanostructured LSCF particles, which are formed at 800 degrees C. The relatively low sintering temperature has effectively eliminated the possible solid-state reaction, which occurs between YSZ and LSCF above 900 degrees C. The nanostructured electrocatalyst promotes the electrochemical activity, resulting in total interfacial polarization resistance of 033 Omega cm(2) at 750 degrees C for the single cell. At the same temperature, the cell has achieved a peak power density of 0.55 W cm(-2), much higher than those reported for the cathode supported tubular SOFCs (about 0.2 W cm(-2)). The improved performance demonstrates the feasibility of fabricating cathode supported tubular SOFCs with highly active catalysts such as LSCF, Sm0.5Sr0.5Co0.3, Ba0.5Sr0.5Co0.5Fe0.2O3 and PrBaCo2O5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:268 / 274
页数:7
相关论文
共 36 条
[1]   Stability and performance of infiltrated La0.8Sr0.2CoxFe1-xO3 electrodes with and without Sm0.2Ce0.8O1.9 interlayers [J].
Adijanto, L. ;
Kuengas, R. ;
Bidrawn, F. ;
Gorte, R. J. ;
Vohs, J. M. .
JOURNAL OF POWER SOURCES, 2011, 196 (14) :5797-5802
[2]   Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ+Y2O3 stabilized ZrO2 composite cathodes [J].
Chen, Jing ;
Liang, Fengli ;
Yan, Dong ;
Pu, Jian ;
Chi, Bo ;
Jiang, San Ping ;
Jian, Li .
JOURNAL OF POWER SOURCES, 2010, 195 (16) :5201-5205
[3]   High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane [J].
Chen, X. J. ;
Liu, Q. L. ;
Chan, S. H. ;
Brandon, N. P. ;
Khor, Khiam Aik .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :767-772
[4]   EVALUATION OF COMMERCIAL ZIRCONIA POWDERS FOR SOLID OXIDE FUEL-CELLS [J].
CIACCHI, FT ;
CRANE, KM ;
BADWAL, SPS .
SOLID STATE IONICS, 1994, 73 (1-2) :49-61
[5]   High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells: Model and experiments [J].
Ding, Dong ;
Zhu, Wei ;
Gao, Jianfeng ;
Xia, Changrong .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :177-185
[6]   Fabrication and properties of anode-supported tubular solid oxide fuel cells [J].
Du, YH ;
Sammes, NM .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :66-71
[7]   Status of tubular SOFC field unit demonstrations [J].
George, RA .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :134-139
[8]   Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating [J].
Hsieh, Wen-Shuo ;
Lin, Pang ;
Wang, Sea-Fue .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (06) :2859-2867
[9]   Cathode-supported tubular solid oxide fuel cell technology: A critical review [J].
Huang, Kevin ;
Singhal, Subhash C. .
JOURNAL OF POWER SOURCES, 2013, 237 :84-97
[10]   Characterization of LSM-YSZ composites prepared by impregnation methods [J].
Huang, YY ;
Vohs, JM ;
Gorte, RJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1347-A1353