Molybdenum metabolism in plants

被引:74
作者
Tejada-Jimenez, Manuel [1 ]
Chamizo-Ampudia, Alejandro [1 ]
Galvan, Aurora [1 ,2 ]
Fernandez, Emilio [1 ,2 ,3 ]
Llamas, Angel [1 ]
机构
[1] Univ Cordoba, Fac Ciencias, Dept Bioquim & Biol Mol, Campus Excelencia Internac Agroalimentario CeiA3, Cordoba 14071, Spain
[2] Univ Seville, Seville, Spain
[3] Univ Liege, Rene Matagnes lab, B-4000 Liege, Belgium
关键词
AFFINITY MOLYBDATE TRANSPORTER; THALIANA PROVIDES INSIGHT; RHODANESE-LIKE DOMAIN; NIFS-LIKE DOMAIN; ESCHERICHIA-COLI; CHLAMYDOMONAS-REINHARDTII; COFACTOR BIOSYNTHESIS; ARABIDOPSIS-THALIANA; XANTHINE DEHYDROGENASE; MOLYBDOPTERIN SYNTHASE;
D O I
10.1039/c3mt00078h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The viability of plants relies on molybdenum, which after binding to the organic moiety of molybdopterin forms the molybdenum cofactor (Moco) and acquires remarkable redox properties. Moco is in the active site of critical molybdoenzymes, which use to work as small electron transport chains and participate in N and S metabolism, hormone biosynthesis, toxic compound transformations and other important processes not only in plants but also in all the other kingdoms of life. Molybdate metabolism in plants is reviewed here, with special attention to two main aspects, the different molybdate transporters that with a very high affinity participate in molybdenum acquisition and the recently discovered Moco enzyme amidoxime-reducing component. Their functionality is starting to be understood.
引用
收藏
页码:1191 / 1203
页数:13
相关论文
共 105 条
[1]  
Anantharaman V, 2002, FEMS MICROBIOL LETT, V207, P55, DOI 10.1016/S0378-1097(01)00515-8
[2]  
ARNON D. I., 1939, PLANT PHYSIOL, V14, P599, DOI 10.1104/pp.14.3.599
[3]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[4]   Mcp1 encodes the molybdenum cofactor carrier protein in Chlamydomonas reinhardtii and participates in protection, binding, and storage functions of the cofactor [J].
Ataya, FS ;
Witte, CP ;
Galván, A ;
Igeño, MI ;
Fernández, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (13) :10885-10890
[5]   Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1) [J].
Baxter, Ivan ;
Muthukumar, Balasubramaniam ;
Park, Hyeong Cheol ;
Buchner, Peter ;
Lahner, Brett ;
Danku, John ;
Zhao, Keyan ;
Lee, Joohyun ;
Hawkesford, Malcolm J. ;
Guerinot, Mary Lou ;
Salt, David E. .
PLOS GENETICS, 2008, 4 (02)
[6]   Metal insertion into the molybdenum cofactor: product substrate channelling demonstrates the functional origin of domain fusion in gephyrin (vol 450, pg 149, 2013) [J].
Belaidi, A. A. ;
Schwarz, G. .
BIOCHEMICAL JOURNAL, 2013, 450 :639-639
[7]   ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana [J].
Bittner, F ;
Oreb, M ;
Mendel, RR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (44) :40381-40384
[8]   Nitrate sensing and signaling in plants [J].
Bouguyon, Eleonore ;
Gojon, Alain ;
Nacry, Philippe .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2012, 23 (06) :648-654
[9]   Oxidative Half-reaction of Arabidopsis thaliana Sulfite Oxidase GENERATION OF SUPEROXIDE BY A PEROXISOMAL ENZYME [J].
Byrne, Robert S. ;
Haensch, Robert ;
Mendel, Ralf R. ;
Hille, Russ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (51) :35479-35484
[10]   Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology [J].
Campbell, WH .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :277-+