On the von Staudt-Clausen theorem for q-Euler numbers

被引:6
作者
Kim, T. [1 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
关键词
Q-BERNOULLI; POLYNOMIALS; SERIES;
D O I
10.1134/S1061920813010044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The q-Euler numbers and polynomials were recently constructed [T. Kim, "The Modified q-Euler Numbers and Polynomials," Adv. Stud. Contemp. Math., 16, 161-170 (2008)]. These q-Euler numbers and polynomials have interesting properties. In this paper, we prove a theorem of the von Staudt-Clausen type for q-Euler numbers; namely, we prove that the q-Euler numbers are p-adic integers. Finally, we prove Kummer-type congruences for the q-Euler numbers.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 24 条
[1]  
[Anonymous], MEM FS KOCHI U A
[2]  
[Anonymous], J INEQUAL APPL
[3]  
Cenkci M., 2007, Advanced Studies in Contemporary Mathematics, V15, P37
[4]  
Cenkci Mehmet., 2004, ADV STUD CONT MATH, V9, P203
[5]  
Comtet L., 1974, Advanced combinatorics
[6]   STIRLINGS SERIES AND BERNOULLI NUMBERS [J].
DEEBA, EY ;
RODRIGUEZ, DM .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (05) :423-426
[7]  
Kim T., 2007, Advanced Studies in Contemporary Mathematics, V15, P133
[8]   q-Extension of the Euler formula and trigonometric functions [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (03) :275-278
[9]  
Kim T, 2005, RUSS J MATH PHYS, V12, P186
[10]  
Kim T, 2003, RUSS J MATH PHYS, V10, P91