Low-coherent optical diffraction tomography by angle-scanning illumination

被引:17
作者
Lee, KyeoReh [1 ,2 ]
Shin, Seungwoo [1 ,2 ]
Yagoob, Zahid [2 ]
So, Peter T. C. [2 ,3 ,4 ]
Park, YongKeun [1 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, 291 Daehak Ro, Daejeon 34141, South Korea
[2] MIT, GR Harrison Spect Lab, Laser Biomed Res Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Tomocube Inc, CTO, Daejeon, South Korea
基金
新加坡国家研究基金会; 美国国家卫生研究院;
关键词
coherent noise; low-coherent; optical diffraction tomography; quantitative phase imaging; DIGITAL HOLOGRAPHIC MICROSCOPY; PHASE MICROSCOPY; HIGH-RESOLUTION; FULL-FIELD; MICROMIRROR DEVICE; LIGHT-SCATTERING; RECONSTRUCTION; COMPENSATION; CELLS; FLUORESCENCE;
D O I
10.1002/jbio.201800289
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Temporally low-coherent optical diffraction tomography (ODT) is proposed and demonstrated based on angle-scanning Mach-Zehnder interferometry. Using a digital micromirror device based on diffractive tilting, the full-field interference of incoherent light is successfully maintained during every angle-scanning sequences. Further, current ODT reconstruction principles for temporally incoherent illuminations are thoroughly reviewed and developed. Several limitations of incoherent illumination are also discussed, such as the nondispersive assumption, optical sectioning capacity and illumination angle limitation. Using the proposed setup and reconstruction algorithms, low-coherent ODT imaging of plastic microspheres, human red blood cells and rat pheochromocytoma cells is experimentally demonstrated.
引用
收藏
页数:10
相关论文
共 75 条
  • [1] Synthetic aperture fourier holographic optical microscopy
    Alexandrov, Sergey A.
    Hillman, Timothy R.
    Gutzler, Thomas
    Sampson, David D.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (16)
  • [2] [Anonymous], ARXIV180601067
  • [3] White-light quantitative phase imaging unit
    Baek, YoonSeok
    Lee, KyeoReh
    Yoon, Jonghee
    Kim, Kyoohyun
    Park, YongKeun
    [J]. OPTICS EXPRESS, 2016, 24 (09): : 9308 - 9315
  • [4] Diffraction phase microscopy with white light
    Bhaduri, Basanta
    Pham, Hoa
    Mir, Mustafa
    Popescu, Gabriel
    [J]. OPTICS LETTERS, 2012, 37 (06) : 1094 - 1096
  • [5] Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination
    Bon, Pierre
    Aknoun, Sherazade
    Monneret, Serge
    Wattellier, Benoit
    [J]. OPTICS EXPRESS, 2014, 22 (07): : 8654 - 8671
  • [6] Noniterative boundary-artifact-free wavefront reconstruction from its derivatives
    Bon, Pierre
    Monneret, Serge
    Wattellier, Benoit
    [J]. APPLIED OPTICS, 2012, 51 (23) : 5698 - 5704
  • [7] Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers
    Chen, Xiao
    Yan, Bin-bin
    Song, Fei-jun
    Wang, Yi-quan
    Xiao, Feng
    Alameh, Kamal
    [J]. APPLIED OPTICS, 2012, 51 (30) : 7214 - 7220
  • [8] Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration
    Choi, Inhyeok
    Lee, Kyeoreh
    Park, Yongkeun
    [J]. OPTICS EXPRESS, 2017, 25 (24): : 30771 - 30779
  • [9] Tomographic phase microscopy
    Choi, Wonshik
    Fang-Yen, Christopher
    Badizadegan, Kamran
    Oh, Seungeun
    Lue, Niyom
    Dasari, Ramachandra R.
    Feld, Michael S.
    [J]. NATURE METHODS, 2007, 4 (09) : 717 - 719
  • [10] Dynamic speckle illumination wide-field reflection phase microscopy
    Choi, Youngwoon
    Hosseini, Poorya
    Choi, Wonshik
    Dasari, Ramachandra R.
    So, Peter T. C.
    Yaqoob, Zahid
    [J]. OPTICS LETTERS, 2014, 39 (20) : 6062 - 6065