DADP: Dynamic abnormality detection and progression for longitudinal knee magnetic resonance images from the Osteoarthritis Initiative

被引:14
作者
Huang, Chao [1 ]
Xu, Zhenlin [2 ]
Shen, Zhengyang [2 ]
Luo, Tianyou [3 ]
Li, Tengfei [4 ,7 ]
Nissman, Daniel [4 ]
Nelson, Amanda [5 ]
Golightly, Yvonne [5 ,6 ]
Niethammer, Marc [2 ,7 ]
Zhu, Hongtu [2 ,3 ,7 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32304 USA
[2] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Thurston Arthrit Res Ctr, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27599 USA
[7] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Osteoarthritis; Abnormal region detection; Dynamic functional mixed effect model; Dynamic conditional random field model; RANDOM-FIELD MODEL; DOCTOR-DIAGNOSED ARTHRITIS; CONDITIONAL RANDOM-FIELDS; US ADULTS; CARTILAGE; SEGMENTATION; HIP; OA; REGISTRATION; PREVALENCE;
D O I
10.1016/j.media.2021.102343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Osteoarthritis (OA) is the most common disabling joint disease. Magnetic resonance (MR) imaging has been commonly used to assess knee joint degeneration due to its distinct advantage in detecting morphologic cartilage changes. Although several statistical methods over conventional radiography have been developed to perform quantitative cartilage analyses, little work has been done capturing the development and progression of cartilage lesions (or abnormal regions) and how they naturally progress. There are two major challenges, including (i) the lack of building spatial-temporal correspondences and correlations in cartilage thickness and (ii) the spatio-temporal heterogeneity in abnormal regions. The goal of this work is to propose a dynamic abnormality detection and progression (DADP) framework for quantitative cartilage analysis, while addressing the two challenges. First, spatial correspondences are established on flattened 2D cartilage thickness maps extracted from 3D knee MR images both across time within each subject and across all subjects. Second, a dynamic functional mixed effects model (DFMEM) is proposed to quantify abnormality progression across time points and subjects, while accounting for the spatio-temporal heterogeneity. We systematically evaluate our DADP using simulations and real data from the Osteoarthritis Initiative (OAI). Our results show that DADP not only effectively detects subject-specific dynamic abnormal regions, but also provides population-level statistical disease mapping and subgroup analysis. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 83 条
[1]   A novel Markov random field model based on region adjacency graph for T1 magnetic resonance imaging brain segmentation [J].
Ahmadvand, Ali ;
Yousefi, Sahar ;
Shalmani, M. T. Manzuri .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2017, 27 (01) :78-88
[2]   Novel statistical methodology reveals that hip shape is associated with incident radiographic hip osteoarthritis among African American women [J].
An, H. ;
Marron, J. S. ;
Schwartz, T. A. ;
Renner, J. B. ;
Liu, F. ;
Lynch, J. A. ;
Lane, N. E. ;
Jordan, J. M. ;
Nelson, A. E. .
OSTEOARTHRITIS AND CARTILAGE, 2016, 24 (04) :640-646
[3]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[4]   The Insight ToolKit image registration framework [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Stauffer, Michael ;
Song, Gang ;
Wu, Baohua ;
Gee, James C. .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[5]   Comparison of 3T MR scanners in regional cartilage-thickness analysis in osteoarthritis: a cross-sectional multicenter, multivendor study [J].
Balamoody, Sharon ;
Williams, Tomos G. ;
Waterton, John C. ;
Bowes, Michael ;
Hodgson, Richard ;
Taylor, Chris J. ;
Hutchinson, Charles E. .
ARTHRITIS RESEARCH & THERAPY, 2010, 12 (05)
[6]   Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data [J].
Bernal-Rusiel, Jorge L. ;
Reuter, Martin ;
Greve, Douglas N. ;
Fischl, Bruce ;
Sabuncu, Mert R. .
NEUROIMAGE, 2013, 81 :358-370
[7]  
BESAG J, 1986, J ROY STAT SOC B, V48, P259
[8]   Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative [J].
Bowes, Michael A. ;
Kacena, Katherine ;
Alabas, Oras A. ;
Brett, Alan D. ;
Dube, Bright ;
Bodick, Neil ;
Conaghan, Philip G. .
ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (04) :502-508
[9]   Diagnosis of osteoarthritis: Imaging [J].
Braun, Hillary J. ;
Gold, Garry E. .
BONE, 2012, 51 (02) :278-288
[10]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169