Unresponsiveness of MyD88-deficient mice to endotoxin

被引:1744
作者
Kawai, T
Adachi, O
Ogawa, T
Takeda, K
Akira, S
机构
[1] Hyogo Coll Med, Dept Biochem, Nishinomiya, Hyogo 6638501, Japan
[2] Japan Sci & Technol Corp, Core Res Evolut Sci & Technol, Nishinomiya, Hyogo 6638501, Japan
[3] Asahi Univ, Sch Dent, Dept Oral Microbiol, Gifu 5010296, Japan
关键词
D O I
10.1016/S1074-7613(00)80086-2
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
MyD88 is a general adaptor protein that plays an important role in the Toll/IL-1 receptor family signalings. Recently, Toll-like receptors 2 and 4 (TLR2 and TLR4) have been suggested to be the signaling receptors for lipopolysaccharide (LPS). In this study, we demonstrate that MyD88 knockout mice lack the ability to respond to LPS as measured by shock response, B cell proliferative response, and secretion of cytokines by macrophages and embryonic fibroblasts. However, activation of neither NF-kappa B nor the mitogen-activated protein (MAP) kinase family is abolished in MyD88 knockout mice. These findings demonstrate that signaling via MyD88 is essential for LPS response, but the inability of MyD88 knockout mice to induce LPS-dependent gene expression cannot simply be attributed to lack of the activation of MAP kinases and NF-kappa B.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 46 条
[1]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[2]   A conserved signaling pathway: The Drosophila Toll-Dorsal pathway [J].
Belvin, MP ;
Anderson, KV .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :393-416
[3]   Regulation of an essential innate immune response by the p50 subunit of NF-κB [J].
Bohuslav, J ;
Kravchenko, VV ;
Parry, GCN ;
Erlich, JH ;
Gerondakis, S ;
Mackman, N ;
Ulevitch, RJ .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (09) :1645-1652
[4]   MyD88, an adapter protein involved in interleukin-1 signaling [J].
Burns, K ;
Martinon, F ;
Esslinger, C ;
Pahl, H ;
Schneider, P ;
Bodmer, JL ;
Di Marco, F ;
French, L ;
Tschopp, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :12203-12209
[5]   TARF6 is a signal transducer for interleukin-1 [J].
Cao, ZD ;
Xiong, J ;
Takeuchi, M ;
Kurama, T ;
Goeddel, DV .
NATURE, 1996, 383 (6599) :443-446
[6]   IRAK: A kinase associated with the interleukin-1 receptor [J].
Cao, ZD ;
Henzel, WJ ;
Gao, XO .
SCIENCE, 1996, 271 (5252) :1128-1131
[7]   Cloning and characterization of two Toll/interleukin-1 receptor-like genes TIL3 and TIL4: Evidence for a multi-gene receptor family in humans [J].
Chaudhary, PM ;
Ferguson, C ;
Nguyen, V ;
Nguyen, O ;
Massa, HF ;
Eby, M ;
Jasmin, A ;
Trask, BJ ;
Hood, L ;
Nelson, PS .
BLOOD, 1998, 91 (11) :4020-4027
[8]   MACROPHAGES DERIVED FROM C3H/HEJ (LPS(D)) MICE RESPOND TO BACTERIAL LIPOPOLYSACCHARIDE BY ACTIVATING NF-KAPPA-B [J].
DING, AH ;
HWANG, SY ;
LANDER, HM ;
XIE, QW .
JOURNAL OF LEUKOCYTE BIOLOGY, 1995, 57 (01) :174-179
[9]  
DONG ZY, 1993, J IMMUNOL, V151, P2717
[10]   Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production [J].
Ghayur, T ;
Banerjee, S ;
Hugunin, M ;
Butler, D ;
Herzog, L ;
Carter, A ;
Quintal, L ;
Sekut, L ;
Talanian, R ;
Paskind, M ;
Wong, W ;
Kamen, R ;
Tracey, D ;
Allen, H .
NATURE, 1997, 386 (6625) :619-623