Cryptanalysis of RSA with a small parameter revisited

被引:5
作者
Meng, Xianmeng [1 ]
Zheng, Xuexin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math, Jinan 250014, Peoples R China
[2] China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
关键词
Algorithms; Cryptanalysis; RSA; The birthday attack; The baby-step giant-step method; EXPONENTS;
D O I
10.1016/j.ipl.2015.06.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let N = pq be an RSA modulus with balanced primes p and q. Suppose that the public exponent e and private exponent d satisfy ed - 1 = k phi(N). We revisit the birthday attack against short exponent RSA proposed by Meng and Zheng at ACISP 2012. We show that if e > root k(p + q), then N can be factored in both time and space complexity of (O) over tilde (root k). This improves the former result. We also give a detail explanation on how the baby-step giant-step method works. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:858 / 862
页数:5
相关论文
共 12 条
[1]  
Apostol T. M., 1995, INTRO ANAL NUMBER TH
[2]  
Bach E., 1996, ALGORITHMIC NUMBER T
[3]  
Boneh D, 1999, LECT NOTES COMPUT SC, V1592, P1
[4]   Cryptanalysis of RSA with private key d less than N0.292 [J].
Boneh, D ;
Durfee, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1339-1349
[5]  
Durfee G, 2000, LECT NOTES COMPUT SC, V1976, P14
[6]  
Menezes A., 1997, HDB APPL CRYPTOGRAPH
[7]  
Meng X.M., 2012, LECT NOTES COMPUT SC, V7372, P115
[8]  
Nguyen P.Q., 2009, CONT MATH SER
[9]  
RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI 10.1145/357980.358017
[10]  
Sun HM, 2005, LECT NOTES COMPUT SC, V3386, P199