Rodent genetic models of Huntington disease

被引:117
作者
Heng, Mary Y. [1 ,2 ]
Detloff, Peter J. [3 ]
Albin, Roger L. [1 ,2 ,4 ]
机构
[1] Univ Michigan, Grad Program Neurosci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Neurol, Ann Arbor, MI 48109 USA
[3] Univ Alabama Birmingham, Dept Biochem & Mol Genet, Birmingham, AL 36294 USA
[4] VAAAHS, Ctr Geriatr Res Educ & Clin, Ann Arbor, MI 48105 USA
关键词
polyglutamine; mouse; striatum;
D O I
10.1016/j.nbd.2008.06.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Huntington disease (HD) is a dominantly inherited human neurodegenerative disorder characterized by motor deficits, cognitive impairment, and psychiatric symptoms leading to inexorable decline and death. Since the identification of the huntingtin gene and the characteristic expanded CAG repeat/polyglutamine mutation, multiple murine genetic models and one rat genetic model have been generated. These models fall into two general categories: transgenic models with ectopic expression of the characteristic expanded CAG codon mutation, and knock-in models with expression of mutant huntingtin under control of endogenous regulatory elements. Rodent genetic models are valuable tools for studying mechanisms of pathogenesis in HD and for preclinical evaluation of possible therapies. In this mini-review, we provide a concise comparative summary of rodent genetic models of HD. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 79 条
[1]   The relationship between CAG repeat length and age of onset differs for Huntington's disease patients with juvenile onset or adult onset [J].
Andresen, J. Michael ;
Gayan, Javier ;
Djousse, Luc ;
Roberts, Simone ;
Brocklebank, Denise ;
Cherny, Stacey S. ;
Cardon, Lon R. ;
Gusella, James F. ;
MacDonald, Marcy E. ;
Myers, Richard H. ;
Housman, David E. ;
Wexler, Nancy S. .
ANNALS OF HUMAN GENETICS, 2007, 71 :295-301
[2]   THE RELATIONSHIP BETWEEN TRINUCLEOTIDE (CAG) REPEAT LENGTH AND CLINICAL-FEATURES OF HUNTINGTONS-DISEASE [J].
ANDREW, SE ;
GOLDBERG, YP ;
KREMER, B ;
TELENIUS, H ;
THEILMANN, J ;
ADAM, S ;
STARR, E ;
SQUITIERI, F ;
LIN, BY ;
KALCHMAN, MA ;
GRAHAM, RK ;
HAYDEN, MR .
NATURE GENETICS, 1993, 4 (04) :398-403
[3]   Striatal glucose metabolism and dopamine D-2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease [J].
Antonini, A ;
Leenders, KL ;
Spiegel, R ;
Meier, D ;
Vontobel, P ;
WeigellWeber, M ;
SanchezPernaute, R ;
deYebenez, JG ;
Boesiger, P ;
Weindl, A ;
Maguire, RP .
BRAIN, 1996, 119 :2085-2095
[4]   Onset and rate of striatal atrophy in preclinical Huntington disease [J].
Aylward, EH ;
Sparks, BF ;
Field, KM ;
Yallapragada, V ;
Shpritz, BD ;
Rosenblatt, A ;
Brandt, J ;
Gourley, LM ;
Liang, K ;
Zhou, H ;
Margolis, RL ;
Ross, CA .
NEUROLOGY, 2004, 63 (01) :66-72
[5]  
Aylward EH, 2000, MOVEMENT DISORD, V15, P552, DOI 10.1002/1531-8257(200005)15:3<552::AID-MDS1020>3.0.CO
[6]  
2-P
[7]   Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length [J].
Becher, MW ;
Kotzuk, JA ;
Sharp, AH ;
Davies, SW ;
Bates, GP ;
Price, DL ;
Ross, CA .
NEUROBIOLOGY OF DISEASE, 1998, 4 (06) :387-397
[8]   White matter volume and cognitive dysfunction in early Huntington's disease [J].
Beglinger, LJ ;
Nopoulos, PC ;
Jorge, RE ;
Langbehn, DR ;
Mikos, AE ;
Moser, DJ ;
Duff, K ;
Robinson, RG ;
Paulsen, JS .
COGNITIVE AND BEHAVIORAL NEUROLOGY, 2005, 18 (02) :102-107
[9]   Glutamate receptor abnormalities in the YAC128 transgenic mouse model of Huntington's disease [J].
Benn, C. L. ;
Slow, E. J. ;
Farrell, L. A. ;
Graham, R. ;
Deng, Y. ;
Hayden, M. R. ;
Cha, J.-H. J. .
NEUROSCIENCE, 2007, 147 (02) :354-372
[10]   Progressive deterioration of reaction time performance and choreiform symptoms in a new Huntington's disease transgenic ratmodel [J].
Cao, Chunyan ;
Temel, Yasin ;
Blokland, Arjan ;
Ozen, Hatice ;
Steinbusch, Harry W. M. ;
Vlamings, Rinske ;
Nguyen, Huu Phuc ;
von Hoersten, Stephan ;
Schmitz, Christoph ;
Visser-Vandewalle, Veerle .
BEHAVIOURAL BRAIN RESEARCH, 2006, 170 (02) :257-261