Domain Organization of the Polymerizing Mannosyltransferases Involved in Synthesis of the Escherichia coli O8 and O9a Lipopolysaccharide O-antigens

被引:33
作者
Greenfield, Laura K. [1 ]
Richards, Michele R. [2 ,3 ]
Vinogradov, Evgeny [4 ]
Wakarchuk, Warren W. [4 ]
Lowary, Todd L. [2 ,3 ]
Whitfield, Chris [1 ]
机构
[1] Univ Guelph, Dept Mol & Cellular Biol, Guelph, ON N1G 2W1, Canada
[2] Univ Alberta, Dept Chem, Edmonton, AB T6G 2G2, Canada
[3] Univ Alberta, Alberta Glyc Ctr, Edmonton, AB T6G 2G2, Canada
[4] Natl Res Council Canada, Inst Biol Sci, Ottawa, ON K1A 0R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SECONDARY STRUCTURE PREDICTION; 2; ACTIVE-SITES; PASTEURELLA-MULTOCIDA; BIOCHEMICAL-CHARACTERIZATION; CRYSTAL-STRUCTURE; GENE-CLUSTER; SACCHAROMYCES-CEREVISIAE; KLEBSIELLA-PNEUMONIAE; POLYSACCHARIDE CHAIN; POLYACRYLAMIDE GELS;
D O I
10.1074/jbc.M112.412577
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli O9a and O8 polymannose O-polysaccharides (O-PSs) serve as model systems for the biosynthesis of bacterial polysaccharides by ATP-binding cassette transporter-dependent pathways. Both O-PSs contain a conserved primer-adaptor domain at the reducing terminus and a serotype-specific repeat unit domain. The repeat unit domain is polymerized by the serotype-specific WbdA mannosyltransferase. In serotype O9a, WbdA is a bifunctional alpha-(1 -> 2)-, alpha-(1 -> 3)-mannosyltransferase, and its counterpart in serotype O8 is trifunctional (alpha-(1 -> 2), alpha-(1 -> 3), and beta-(1 -> 2)). Little is known about the detailed structures or mechanisms of action of the WbdA polymerases, and here we establish that they are multidomain enzymes. WbdA(O9a) contains two separable and functionally active domains, whereas WbdA(O8) possesses three. In WbdC(O9a) and WbdB(O9a), substitution of the first Glu of the EX7E motif had detrimental effects on the enzyme activity, whereas substitution of the second had no significant effect on activity in vivo. Mutation of the Glu residues in the EX7E motif of the N-terminal WbdA(O9a) domain resulted in WbdA variants unable to synthesize O-PS. In contrast, mutation of the Glu residues in the motif of the C-terminal WbdA(O9a) domain generated an enzyme capable of synthesizing an altered O-PS repeat unit consisting of only alpha-(1 -> 2) linkages. In vitro assays with synthetic acceptors unequivocally confirmed that the N-terminal domain of WbdA(O9a) possesses alpha-(1 -> 2)-mannosyltransferase activity. Together, these studies form a framework for detailed structure-function studies on individual domains and a strategy applicable for dissection and analysis of other multidomain glycosyltransferases.
引用
收藏
页码:38135 / 38149
页数:15
相关论文
共 87 条
[1]   Identification of essential amino acids in the bacterial α-mannosyltransferase AceA [J].
Abdian, PL ;
Lellouch, AC ;
Gautier, C ;
Ielpi, L ;
Geremia, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (51) :40568-40575
[2]   Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide [J].
Absmanner, Birgit ;
Schmeiser, Verena ;
Kaempf, Michael ;
Lehle, Ludwig .
BIOCHEMICAL JOURNAL, 2010, 426 :205-217
[3]   ROLE OF THE RFE GENE IN THE BIOSYNTHESIS OF THE ESCHERICHIA-COLI O7-SPECIFIC LIPOPOLYSACCHARIDE AND OTHER O-SPECIFIC POLYSACCHARIDES CONTAINING N-ACETYLGLUCOSAMINE [J].
ALEXANDER, DC ;
VALVANO, MA .
JOURNAL OF BACTERIOLOGY, 1994, 176 (22) :7079-7084
[4]  
[Anonymous], [No title captured]
[5]   Acceptor Substrate Discrimination in Phosphatidyl-myo-inositol Mannoside Synthesis STRUCTURAL AND MUTATIONAL ANALYSIS OF MANNOSYLTRANSFERASE CORYNEBACTERIUM GLUTAMICUM PimB′ [J].
Batt, Sarah M. ;
Jabeen, Talat ;
Mishra, Arun K. ;
Veerapen, Natacha ;
Krumbach, Karin ;
Eggeling, Lothar ;
Besra, Gurdyal S. ;
Fuetterer, Klaus .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (48) :37741-37752
[6]   Structures and mechanisms of glycosyltransferases [J].
Breton, C ;
Snajdrová, L ;
Jeanneau, C ;
Koca, J ;
Imberty, A .
GLYCOBIOLOGY, 2006, 16 (02) :29R-37R
[7]   ROLE OF ALPHA-LACTALBUMIN AND A PROTEIN IN LACTOSE SYNTHETASE - A UNIQUE MECHANISM FOR CONTROL OF A BIOLOGICAL REACTION [J].
BREW, K ;
VANAMAN, TC ;
HILL, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1968, 59 (02) :491-&
[8]   Protein annotation and modelling servers at University College London [J].
Buchan, D. W. A. ;
Ward, S. M. ;
Lobley, A. E. ;
Nugent, T. C. O. ;
Bryson, K. ;
Jones, D. T. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W563-W568
[9]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[10]   Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases [J].
Chavaroche, Anais A. E. ;
van den Broek, Lambertus A. M. ;
Boeriu, Carmen ;
Eggink, Gerrit .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (05) :1199-1210