Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach

被引:19
|
作者
Shah, Ismail [1 ]
Muhammad, Izhar [1 ]
Ali, Sajid [1 ]
Ahmed, Saira [2 ,3 ]
Almazah, Mohammed M. A. [4 ,5 ]
Al-Rezami, A. Y. [6 ,7 ]
机构
[1] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan
[2] United Nations Ind Dev Org, Islamabad 1051, Pakistan
[3] Capital Univ Sci & Technol, Directorate Sustainabil & Environm, Islamabad 44000, Pakistan
[4] King Khalid Univ, Coll Sci & Arts Muhyil, Dept Math, Muhyil 61421, Saudi Arabia
[5] Ibb Univ, Coll Sci, Dept Math & Comp, Ibb 70270, Yemen
[6] Prince Sattam Bin Abdulaziz Univ, Math Dept, Al Kharj 16278, Saudi Arabia
[7] Sanaa Univ, Dept Stat & Informat, Sanaa 1247, Yemen
关键词
traffic flow forecasting; autoregressive; functional time series; Dublin airport link road; short-term prediction; functional data analysis; ARIMA; PREDICTION;
D O I
10.3390/math10224279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nowadays, short-term traffic flow forecasting has gained increasing attention from researchers due to traffic congestion in many large and medium-sized cities that pose a serious threat to sustainable urban development. To this end, this research examines the forecasting performance of functional time series modeling to forecast traffic flow in the ultra-short term. An appealing feature of the functional approach is that unlike other methods, it provides information over the whole day, and thus, forecasts can be obtained for any time within a day. Within this approach, a Functional AutoRegressive (FAR) model is used to forecast the next-day traffic flow. For empirical analysis, the traffic flow data of Dublin airport link road, Ireland, collected at a fifteen-minute interval from 1 January 2016 to 30 April 2017, are used. The first twelve months are used for model estimation, while the remaining four months are for the one-day-ahead out-of-sample forecast. For comparison purposes, a widely used model, namely AutoRegressive Integrated Moving Average (ARIMA), is also used to obtain the forecasts. Finally, the models' performances are compared based on different accuracy statistics. The study results suggested that the functional time series model outperforms the traditional time series models. As the proposed method can produce traffic flow forecasts for the entire next day with satisfactory results, it can be used in decision making by transportation policymakers and city planners.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Day-Ahead Building Load Forecasting with a Small dataset
    Lauricella, Marco
    Cai, Zhongtian
    Fagiano, Lorenzo
    IFAC PAPERSONLINE, 2020, 53 (02): : 13076 - 13081
  • [12] Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm
    Li, Linchao
    Qin, Lingqiao
    Qu, Xu
    Zhang, Jian
    Wang, Yonggang
    Ran, Bin
    KNOWLEDGE-BASED SYSTEMS, 2019, 172 : 1 - 14
  • [13] Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron
    Ehsan, R. Muhammad
    Simon, Sishaj P.
    Venkateswaran, P. R.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (12) : 3981 - 3992
  • [14] Pandemic-Aware Day-Ahead Demand Forecasting Using Ensemble Learning
    Arjomandi-Nezhad, Ali
    Ahmadi, Amirhossein
    Taheri, Saman
    Fotuhi-Firuzabad, Mahmud
    Moeini-Aghtaie, Moein
    Lehtonen, Matti
    IEEE ACCESS, 2022, 10 : 7098 - 7106
  • [15] Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market
    Monteiro, Claudio
    Fernandez-Jimenez, L. Alfredo
    Ramirez-Rosado, Ignacio J.
    ENERGIES, 2015, 8 (09) : 10464 - 10486
  • [16] Two-Stage Hybrid Day-Ahead Solar Forecasting
    Alanazi, Mohana
    Mahoor, Mohsen
    Khodaei, Amin
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [17] Domain Hybrid Day-Ahead Solar Radiation Forecasting Scheme
    Park, Jinwoong
    Park, Sungwoo
    Shim, Jonghwa
    Hwang, Eenjun
    REMOTE SENSING, 2023, 15 (06)
  • [18] Deterministic and Stochastic Approaches for Day-Ahead Solar Power Forecasting
    Pierro, Marco
    Bucci, Francesco
    De Felice, Matteo
    Maggioni, Enrico
    Perotto, Alessandro
    Spada, Francesco
    Moser, David
    Cornaro, Cristina
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (02):
  • [19] Forecasting day-ahead price spikes for the Ontario electricity market
    Sandhu, Harmanjot Singh
    Fang, Liping
    Guan, Ling
    ELECTRIC POWER SYSTEMS RESEARCH, 2016, 141 : 450 - 459
  • [20] Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks
    Pavicevic, Milutin
    Popovic, Tomo
    SENSORS, 2022, 22 (03)