Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach

被引:19
|
作者
Shah, Ismail [1 ]
Muhammad, Izhar [1 ]
Ali, Sajid [1 ]
Ahmed, Saira [2 ,3 ]
Almazah, Mohammed M. A. [4 ,5 ]
Al-Rezami, A. Y. [6 ,7 ]
机构
[1] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan
[2] United Nations Ind Dev Org, Islamabad 1051, Pakistan
[3] Capital Univ Sci & Technol, Directorate Sustainabil & Environm, Islamabad 44000, Pakistan
[4] King Khalid Univ, Coll Sci & Arts Muhyil, Dept Math, Muhyil 61421, Saudi Arabia
[5] Ibb Univ, Coll Sci, Dept Math & Comp, Ibb 70270, Yemen
[6] Prince Sattam Bin Abdulaziz Univ, Math Dept, Al Kharj 16278, Saudi Arabia
[7] Sanaa Univ, Dept Stat & Informat, Sanaa 1247, Yemen
关键词
traffic flow forecasting; autoregressive; functional time series; Dublin airport link road; short-term prediction; functional data analysis; ARIMA; PREDICTION;
D O I
10.3390/math10224279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nowadays, short-term traffic flow forecasting has gained increasing attention from researchers due to traffic congestion in many large and medium-sized cities that pose a serious threat to sustainable urban development. To this end, this research examines the forecasting performance of functional time series modeling to forecast traffic flow in the ultra-short term. An appealing feature of the functional approach is that unlike other methods, it provides information over the whole day, and thus, forecasts can be obtained for any time within a day. Within this approach, a Functional AutoRegressive (FAR) model is used to forecast the next-day traffic flow. For empirical analysis, the traffic flow data of Dublin airport link road, Ireland, collected at a fifteen-minute interval from 1 January 2016 to 30 April 2017, are used. The first twelve months are used for model estimation, while the remaining four months are for the one-day-ahead out-of-sample forecast. For comparison purposes, a widely used model, namely AutoRegressive Integrated Moving Average (ARIMA), is also used to obtain the forecasts. Finally, the models' performances are compared based on different accuracy statistics. The study results suggested that the functional time series model outperforms the traditional time series models. As the proposed method can produce traffic flow forecasts for the entire next day with satisfactory results, it can be used in decision making by transportation policymakers and city planners.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Day-Ahead Electricity Load Forecasting with Multivariate Time Series
    Crujido, Lorenz Jan C.
    Gozon, Clark Darwin M.
    Pallugna, Reuel C.
    MINDANAO JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 21 (02): : 95 - 115
  • [2] A hybrid day-ahead electricity price forecasting framework based on time series
    Xiong, Xiaoping
    Qing, Guohua
    ENERGY, 2023, 264
  • [3] Day-ahead electricity demand forecasting with nonparametric functional models
    Shah, Ismail
    Lisi, Francesco
    2015 12TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2015,
  • [4] Day-Ahead Electricity Price Forecasting Using Artificial Intelligence
    Zhang, Jun
    Cheng, Chuntian
    2008 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE, 2008, : 156 - 160
  • [5] An Online-Calibrated Time Series Based Model for Day-Ahead Natural Gas Demand Forecasting
    Khani, Hadi
    Farag, Hany E. Z.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) : 2112 - 2123
  • [6] Day-ahead electricity price forecasting by a new hybrid method
    Zhang, Jinliang
    Tan, Zhongfu
    Yang, Shuxia
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (03) : 695 - 701
  • [7] Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method
    Gu, Bo
    Shen, Huiqiang
    Lei, Xiaohui
    Hu, Hao
    Liu, Xinyu
    APPLIED ENERGY, 2021, 299
  • [8] Forecasting day-ahead electricity prices using a new integrated model
    Zhang, Jin-Liang
    Zhang, Yue-Jun
    Li, De-Zhi
    Tan, Zhong-Fu
    Ji, Jian-Fei
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 105 : 541 - 548
  • [9] Electricity price forecasting on the day-ahead market using machine learning
    Tschora, Leonard
    Pierre, Erwan
    Plantevit, Marc
    Robardet, Celine
    APPLIED ENERGY, 2022, 313
  • [10] Forecasting day-ahead natural gas demand in Denmark
    Karabiber, Orhan Altug
    Xydis, George
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 76