Optimal Identical Binary Quantizer Design for Distributed Estimation

被引:39
作者
Kar, Swarnendu [1 ]
Chen, Hao [2 ]
Varshney, Pramod K. [1 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
[2] Boise State Univ, Coll Engn, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Distributed estimation; dithering; minimax CRLB; probabilistic quantization; DECENTRALIZED ESTIMATION; SENSOR NETWORKS; CHANNELS;
D O I
10.1109/TSP.2012.2191777
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the design of identical one-bit probabilistic quantizers for distributed estimation in sensor networks. We assume the parameter-range to be finite and known and use the maximum Cramer-Rao lower bound (CRB) over the parameter-range as our performance metric. We restrict our theoretical analysis to the class of antisymmetric quantizers and determine a set of conditions for which the probabilistic quantizer function is greatly simplified. We identify a broad class of noise distributions, which includes Gaussian noise in the low-SNR regime, for which the often used threshold-quantizer is found to be minimax-optimal. Aided with theoretical results, we formulate an optimization problem to obtain the optimum minimax-CRB quantizer. For a wide range of noise distributions, we demonstrate the superior performance of the new quantizer-particularly in the moderate to high-SNR regime.
引用
收藏
页码:3896 / 3901
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1964, HDB MATH FUNCTIONS
[2]   Constrained decentralized estimation over noisy channels for sensor networks [J].
Aysal, Tuncer Can ;
Barner, Kenneth E. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (04) :1398-1410
[3]   Performance Limit for Distributed Estimation Systems With Identical One-Bit Quantizers [J].
Chen, Hao ;
Varshney, Pramod K. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (01) :466-471
[4]  
GRAY RM, 1993, IEEE T INFORM THEORY, V39, P805, DOI 10.1109/18.256489
[5]  
Kay S., 1993, Fundamentals of statistical processing, volume I: estimation theory, VI
[6]   Universal decentralized estimation in a bandwidth constrained sensor network [J].
Luo, ZQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2210-2219
[7]   A generalized normal distribution [J].
Nadarajah, S .
JOURNAL OF APPLIED STATISTICS, 2005, 32 (07) :685-694
[8]   Sequential signal encoding from noisy measurements using quantizers with dynamic bias control [J].
Papadopoulos, HC ;
Wornell, GW ;
Oppenheim, AV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) :978-1002
[9]   Bandwidth-constrained distributed estimation for wireless sensor networks - Part I: Gaussian case [J].
Ribeiro, A ;
Giannakis, GB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (03) :1131-1143
[10]   Quantization for maximin ARE in distributed estimation [J].
Venkitasubramaniam, Parvathinathan ;
Tong, Lang ;
Swami, Ananthram .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (07) :3596-3605