Nowhere monotone functions and microscopic sets

被引:5
作者
Karasinska, A. [1 ]
Wagner-Bojakowska, E. [1 ,2 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
[2] Coll Comp Sci, Chair Math, PL-93008 Lodz, Poland
关键词
nowhere monotone function; one-to-one restriction; microscopic set;
D O I
10.1007/s10474-008-7093-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate how large a set can be on which a continuous nowhere monotone function is one-to-one. We consider the sigma-ideal of microscopic sets, which is situated between the countable sets and the sets of Hausdorff dimension zero and prove that the typical function in C[0, 1] (in the sense of Baire) is nowhere monotone and one-to-one except on some microscopic set. We also give an example of a continuous nowhere monotone function of bounded variation on [0,1], which is one-to-one except on some microscopic set; so it is not a typical function.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 16 条
[1]  
AGRONSKY SJ, 1989, J LOND MATH SOC, V40, P227
[2]  
[Anonymous], REV MATH PURES APPL
[3]  
[Anonymous], 1963, FUNDAMENTA MATH, DOI DOI 10.4064/FM-52-1-59-68
[4]  
APPELL J, 2001, RIC MAT, V50, P255
[5]  
APPELL J, 2001, REND I MAT U TRIESTE, V33, P127
[6]   Nowhere monotone functions and functions of nonmonotonic type [J].
Brown, JB ;
Darji, UB ;
Larsen, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :173-182
[7]  
Bruckner A. M., 1997, REAL ANAL
[8]   LEVEL STRUCTURE OF A RESIDUAL SET OF CONTINUOUS-FUNCTIONS [J].
BRUCKNER, AM ;
GARG, KM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 232 (SEP) :307-321
[9]  
Buczolich Z, 2006, MATH BOHEM, V131, P291
[10]  
Garg K. M., 1962, REV MATH PURE APPL, V7, P663