Extremal spacings between eigenphases of random unitary matrices and their tensor products

被引:5
作者
Smaczynski, Marek [1 ]
Tkocz, Tomasz [2 ]
Kus, Marek [3 ]
Zyczkowski, Karol [1 ,3 ]
机构
[1] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 05期
关键词
ENSEMBLES;
D O I
10.1103/PhysRevE.88.052902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extremal spacings between eigenphases of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N = 4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N = n(k) becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s(min)) and P(s(max)) reveal certain deviations from the Poissonian behavior.
引用
收藏
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 1993, OXFORD STUDIES PROBA
[2]  
[Anonymous], THESIS PRINCETON U
[3]   EXTREME GAPS BETWEEN EIGENVALUES OF RANDOM MATRICES [J].
Ben Arous, Gerard ;
Bourgade, Paul .
ANNALS OF PROBABILITY, 2013, 41 (04) :2648-2681
[4]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[5]  
Forrester P.J., 2010, Log-gases and random matrices, V34
[6]  
Haake F., 2006, Quantum Signatures of Chaos
[7]  
Horn R.A., 1994, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[8]   Nearest-neighbour spacing distributions of the β-Hermite ensemble of random matrices [J].
Le Caer, G. ;
Male, C. ;
Delannay, R. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 383 (02) :190-208
[9]   TIME-REVERSAL SYMMETRY-BREAKING AND THE STATISTICAL PROPERTIES OF QUANTUM-SYSTEMS [J].
LENZ, G ;
ZYCZKOWSKI, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5539-5551
[10]  
Mehta M L., 2004, RANDOM MATRICES