Unique Solutions for Fractional q-Difference Boundary Value Problems Via a Fixed Point Method

被引:9
作者
Ren, Jing [1 ]
Zhai, Chengbo [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
关键词
Fractional q-difference equation; Existence and uniqueness; Nontrivial solution; phi; -; (h; e)-Concave operator; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1007/s40840-017-0560-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by applying the cone theory in ordered Banach spaces associated with the characters of increasing phi-(h,e)-concave operators, we investigate the existence and uniqueness of nontrivial solutions for a nonlinear fractional q-difference equation boundary value problem. The main results show that we can construct an iterative scheme approximating the unique nontrivial solution. Relying on an example, we show the efficiency and applicability of the main result.
引用
收藏
页码:1507 / 1521
页数:15
相关论文
共 28 条
  • [1] CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    AGARWAL, RP
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 365 - &
  • [2] Ahmad B., 2016, Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities
  • [3] Ahmad B., 2012, ADV DIFFER EQU-NY, V140, P1
  • [4] Ahmad B, 2016, B MATH SOC SCI MATH, V59, P119
  • [5] Impulsive fractional q-integro-difference equations with separated boundary conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    Alsulami, Hamed H.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 : 199 - 213
  • [6] Existence results for fractional q-difference equations of order α ∈]2, 3[ with three-point boundary conditions
    Almeida, Ricardo
    Martins, Natalia
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) : 1675 - 1685
  • [7] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [8] q-Fractional Calculus and Equations Preface
    Ismail, Mourad
    [J]. Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : IX - +
  • [9] Impulsive fractional differential equations with Riemann-Liouville derivative and iterative learning control
    Chen, Qian
    Debbouche, Amar
    Luo, Zijian
    Wang, JinRong
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 111 - 118
  • [10] Positive solutions for a class of boundary value problems with fractional q-differences
    Ferreira, Rui A. C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 367 - 373