Energy cost of heat activating serpentinites for CO2 storage by mineralisation

被引:38
作者
Balucan, Reydick D. [1 ,2 ]
Dlugogorski, Bogdan Z. [1 ]
Kennedy, Eric M. [1 ]
Belova, Irina V. [3 ]
Murch, Graeme E. [3 ]
机构
[1] Univ Newcastle, Fac Engn & Built Environm, Prior Res Ctr Energy, Callaghan, NSW 2308, Australia
[2] Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia
[3] Univ Newcastle, Univ Ctr Mass & Thermal Transport Engn Mat, Prior Res Ctr Geotech & Mat Modelling, Sch Engn, Callaghan, NSW 2308, Australia
关键词
CO2; mineralisation; sequestration; Thermal activation; SEQUESTRATION; DEHYDROXYLATION; PRETREATMENT; ANTIGORITE; MINERALS; KINETICS;
D O I
10.1016/j.ijggc.2013.05.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this contribution, we present fuel cost estimates based on a practical heat activation strategy for serpentinites, for large-scale mineralisation of CO2 in New South Wales, Australia. We have found the serpentinites from the Great Serpentinite Belt in New South Wales to be particularly suitable for heat activation, as opposed to the partly serpentinised ultramafic minerals of the Coolac Serpentinite Belt. The activation strategy comprises prograde heating to produce an active material with 20% OHres and the recovery of similar to 80% of the sensible heat from the dehydroxylated mineral. The strategy also involves direct combustion of natural gas to supply an energy input of at least 574 MJ (tSerpentinite)(-1), to minimise secondary CO2 emissions generated from the thermal activation of serpentinite. A CO2 penalty of about 7% yields 0.93 net tonne of available active serpentine per tonne of serpentinite feedstock. The cost for serpentinite heat activation for this practical heating strategy amounts to A$ 1.25 per tonne of available active serpentine. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 239
页数:15
相关论文
共 34 条
[1]  
Balucan R.D., 2012, AM MINERALO IN PRESS
[2]  
Balucan R.D., 2012, THESIS U NEWCASTLE N
[3]   Optimization of antigorite heat pre-treatment via kinetic modeling of the dehydroxylation reaction for CO2 mineralization [J].
Balucan, Reydick D. ;
Kennedy, Eric M. ;
Mackie, John F. ;
Dlugogorski, Bogdan Z. .
GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2011, 1 (04) :294-304
[4]   Thermal Activation of Antigorite for Mineralization of CO2 [J].
Balucan, Reydick D. ;
Dlugogorski, Bogdan Z. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (01) :182-190
[5]  
Boerrigter H., 2010, United States Patent, Patent No. [US2010/0282079 A1, 20100282079]
[6]  
Brent G., 2008, Patent No. [WO/2008/0631305 A1, 20080631305]
[7]  
Brent G.F., 2008, CHEMECA 2008
[8]   Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide [J].
Butt, DP ;
Lackner, KS ;
Wendt, CH ;
Conzone, SD ;
Kung, H ;
Lu, YC ;
Bremser, JK .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (07) :1892-1898
[9]  
Chizmeshya A.V., 2011, Patent No. [WO 2011/035047 A2, 2011035047]
[10]  
Davis M., 2008, THESIS U NEWCASTLE N