Rootstocks improve cucumber photosynthesis through nitrogen metabolism regulation under salt stress

被引:34
作者
Liu, Zhixiong [1 ]
Bie, Zhilong [1 ]
Huang, Yuan [1 ]
Zhen, Ai [1 ]
Niu, Mengliang [1 ]
Lei, Bo [1 ]
机构
[1] Huazhong Agr Univ, Key Lab Hort Plant Biol, Minist Educ, Coll Hort & Forestry, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Cucumis sativus; Nitrogen metabolism; Rootstock; Rubisco; Salinity; Photosynthesis; NITRATE TRANSPORTERS; SALICYLIC-ACID; PLANT-GROWTH; RICE LEAVES; RUBISCO; L; TOLERANCE; SALINITY; CAPACITY; TOMATO;
D O I
10.1007/s11738-013-1262-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We examined the growth, photosynthetic parameters, initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, the relative expression of rbcL, rbcS, and rca gene, and nitrogen metabolism of cucumber (Cucumis sativus L. cv. Jinchun No.2, CS) plants grafted onto figleaf gourd (Cucurbita ficifolia Bouch,, CF) and pumpkin (Cucurbita moschata Duch. cv. Chaojiquanwang, CM) rootstocks. Growth inhibition under salt stress (90 mM NaCl) was characterized by the irreversible inhibition of CO2 assimilation in the cucumber plants grafted onto cucumber rootstocks (CS/CS). In contrast, this effect was significantly alleviated by grafting the cucumber plants onto the CF and CM roots (CS/CF, CS/CM). Under NaCl stress, the CS/CF and CS/CM plants exhibited higher photosynthetic activity, higher initial and total Rubisco activity, and higher Rubisco-related gene expression than the CS/CS plants. Salinity resulted in a lesser increase in nitrate content and decrease in free amino acid content in the CS/CF and the CS/CM plants compared with the CS/CS plants. Accordingly, the activity of nitrate reductase, glutamine synthetase, and glutamate synthase decreased significantly, especially in the CS/CS plants. These results suggest that grafting cucumber plants onto salt-tolerant rootstocks enhances Rubisco activity and the expression of Rubisco-related genes by effectively accelerating nitrate transformation into amino acids under NaCl stress, thereby improving the photosynthetic performance of cucumber leaves.
引用
收藏
页码:2259 / 2267
页数:9
相关论文
共 38 条
[1]   Nitrate reductase in Zea mays L. under salinity [J].
Abd-El Baki, GK ;
Siefritz, F ;
Man, HM ;
Weiner, H ;
Kaldenhoff, R ;
Kaiser, WM .
PLANT CELL AND ENVIRONMENT, 2000, 23 (05) :515-521
[2]   Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato [J].
Albacete, Alfonso ;
Martinez-Andujar, Cristina ;
Ghanem, Michel Edmond ;
Acosta, Manuel ;
Sanchez-Bravo, Jose ;
Asins, Maria J. ;
Cuartero, Jesus ;
Lutts, Stanley ;
Dodd, Ian C. ;
Perez-Alfocea, Francisco .
PLANT CELL AND ENVIRONMENT, 2009, 32 (07) :928-938
[3]   Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants [J].
Alpaslan, M ;
Gunes, A .
PLANT AND SOIL, 2001, 236 (01) :123-128
[4]   Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? [J].
Arfan, Muhammad ;
Athar, Habib R. ;
Ashraf, Muhammad .
JOURNAL OF PLANT PHYSIOLOGY, 2007, 164 (06) :685-694
[5]   Evidence for substrate induction of a nitrate efflux system in barley roots [J].
Aslam, M ;
Travis, RL ;
Rains, DW .
PLANT PHYSIOLOGY, 1996, 112 (03) :1167-1175
[6]   PURIFICATION AND KINETICS OF HIGHER PLANT NADH - NITRATE REDUCTASE [J].
CAMPBELL, WH ;
SMARRELLI, J .
PLANT PHYSIOLOGY, 1978, 61 (04) :611-616
[7]   RAPID COLORIMETRIC DETERMINATION OF NITRATE IN PLANT-TISSUE BY NITRATION OF SALICYLIC-ACID [J].
CATALDO, DA ;
HAROON, M ;
SCHRADER, LE ;
YOUNGS, VL .
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 1975, 6 (01) :71-80
[8]   Rubisco activation state decreases with increasing nitrogen content in apple leaves [J].
Cheng, LL ;
Fuchigami, LH .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (351) :1687-1694
[9]  
COCKING EC, 1954, BIOCHEM J, V58, pR12
[10]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395