Computing subgroups by exhibition in finite solvable groups

被引:8
作者
Eick, B [1 ]
Wright, CRB
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geometrie, D-38106 Braunschweig, Germany
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
D O I
10.1006/jsco.2000.0503
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present practical algorithms to compute subgroups such as Hall systems, system normalizers, F-normalizers and F-covering subgroups in finite solvable groups. An application is an algorithm to calculate head complements in finite solvable groups; that is, complements which are closely related to maximal subgroups. Our algorithms use the technique of exhibiting subgroups. (C) 2002 Academic Press.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 14 条
[1]  
CANNON J, 1993, UNPUB SPECIAL PRESEN
[2]   F-NORMALIZERS OF A FINITE SOLUBLE GROUP [J].
CARTER, R ;
HAWKES, T .
JOURNAL OF ALGEBRA, 1967, 5 (02) :175-&
[3]   SOME REMARKS ON THE COMPUTATION OF COMPLEMENTS AND NORMALIZERS IN SOLUBLE GROUPS [J].
CELLER, F ;
NEUBUSER, J ;
WRIGHT, CRB .
ACTA APPLICANDAE MATHEMATICAE, 1990, 21 (1-2) :57-76
[4]  
Doerk K., 1992, GRUYTER EXP MATH, V4
[5]  
EICK B, 1997, DIMACS SERIES GROUPS
[6]  
Gaschutz W., 1962, Math. Z, V80, P300, DOI [10.1007/BF01162386, DOI 10.1007/BF01162386]
[7]  
LAUE R, 1984, P LOND MATH SOC S CO, P105
[8]   A FINITE SOLUBLE QUOTIENT ALGORITHM [J].
NIEMEYER, AC .
JOURNAL OF SYMBOLIC COMPUTATION, 1994, 18 (06) :541-561
[9]   TOWARDS A SOLUBLE QUOTIENT ALGORITHM [J].
PLESKEN, W .
JOURNAL OF SYMBOLIC COMPUTATION, 1987, 4 (01) :111-122
[10]  
SCHONERT M, 1995, GAP GROUPS ALGORITHM