Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method. II. Deformed nuclei

被引:20
作者
Bhagwat, A. [1 ]
Vinas, X. [2 ,3 ]
Centelles, M. [2 ,3 ]
Schuck, P. [4 ,5 ,6 ]
Wyss, R. [7 ]
机构
[1] UM DAE Ctr Excellence Basic Sci, Bombay 400098, Maharashtra, India
[2] Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, E-08028 Barcelona, Spain
[3] Univ Barcelona, Fac Fis, Inst Ciencies Cosmos, E-08028 Barcelona, Spain
[4] Univ Paris 11, Inst Phys Nucl, CNRS, IN2P3, F-91406 Orsay, France
[5] CNRS, Lab Phys & Modelisat Milieux Condenses, F-38042 Grenoble 9, France
[6] Univ Grenoble 1, F-38042 Grenoble 9, France
[7] KTH Royal Inst Technol, Alba Nova Univ Ctr, Dept Nucl Phys, S-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW C | 2012年 / 86卷 / 04期
关键词
APPROXIMATION; DEFORMATIONS; MASSES;
D O I
10.1103/PhysRevC.86.044316
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The binding energies of deformed even-even nuclei have been analyzed within the framework of a recently proposed microscopic-macroscopic model. We have used the semiclassical Wigner-Kirkwood (h) over bar expansion up to fourth order, instead of the usual Strutinsky averaging scheme, to compute the shell corrections in a deformed Woods-Saxon potential including the spin-orbit contribution. For a large set of 561 even-even nuclei with Z >= 8 and N >= 8, we find an rms deviation from the experiment of 610 keV in binding energies, comparable to the one found for the same set of nuclei using the finite range droplet model of Moller and Nix (656 keV). As applications of our model, we explore its predictive power near the proton and neutron drip lines as well as in the superheavy mass region. Next, we systematically explore the fourth-order Wigner-Kirkwood corrections to the smooth part of the energy. It is found that the ratio of the fourth-order to the second-order corrections behaves in a very regular manner as a function of the asymmetry parameter I = (N - Z)/A. This allows us to absorb the fourth-order corrections into the second-order contributions to the binding energy, which enables us to simplify and speed up the calculation of deformed nuclei.
引用
收藏
页数:12
相关论文
共 44 条
[1]   A consistent set of nuclear rms charge radii:: properties of the radius surface R (N, Z) [J].
Angeli, I .
ATOMIC DATA AND NUCLEAR DATA TABLES, 2004, 87 (02) :185-206
[2]   The AME2003 atomic mass evaluation (II). Tables, graphs and references [J].
Audi, G ;
Wapstra, AH ;
Thibault, C .
NUCLEAR PHYSICS A, 2003, 729 (01) :337-676
[3]   α-decay chains of 175289114 and 175293118 in the relativistic mean-field model -: art. no. 031302 [J].
Bender, M .
PHYSICAL REVIEW C, 2000, 61 (03)
[4]   Self-consistent mean-field models for nuclear structure [J].
Bender, M ;
Heenen, PH ;
Reinhard, PG .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :121-180
[5]   WIGNER-KIRKWOOD METHOD FOR MICROSCOPIC-MACROSCOPIC CALCULATION OF BINDING ENERGIES [J].
Bhagwat, A. ;
Vinas, X. ;
Wyss, R. ;
Schuck, P. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (04) :747-758
[6]   Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method [J].
Bhagwat, A. ;
Vinas, X. ;
Centelles, M. ;
Schuck, P. ;
Wyss, R. .
PHYSICAL REVIEW C, 2010, 81 (04)
[7]   SELFCONSISTENT SEMICLASSICAL DESCRIPTION OF AVERAGE NUCLEAR PROPERTIES - A LINK BETWEEN MICROSCOPIC AND MACROSCOPIC MODELS [J].
BRACK, M ;
GUET, C ;
HAKANSSON, HB .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 123 (05) :275-364
[8]  
Brack M., 1997, SEMICLASSICAL PHYS
[9]   Thomas-Fermi theory for atomic nuclei revisited [J].
Centelles, M. ;
Schuck, P. ;
Vinas, X. .
ANNALS OF PHYSICS, 2007, 322 (02) :363-396
[10]   Average ground-state energy of finite Fermi systems [J].
Centelles, M. ;
Leboeuf, P. ;
Monastra, A. G. ;
Roccia, J. ;
Schuck, P. ;
Vinas, X. .
PHYSICAL REVIEW C, 2006, 74 (03)