Hypertrophic responses of cardiomyocytes induced by endothelin-1 through the protein kinase C-dependent but Src and Ras-independent pathways

被引:21
作者
Yamazaki, T
Komuro, I
Zou, YZ
Yazaki, E
机构
[1] Univ Tokyo, Grad Sch Med, Dept Cardiovasc Med, Bunkyo Ku, Tokyo 1138655, Japan
[2] Univ Tokyo, Grad Sch Med, Dept Pharmacoepidemiol, Bunkyo Ku, Tokyo 1138655, Japan
来源
HYPERTENSION RESEARCH-CLINICAL AND EXPERIMENTAL | 1999年 / 22卷 / 02期
关键词
endothelin; signal transduction; cardiac hypertrophy; extracellular signal-regulated protein kinase;
D O I
10.1291/hypres.22.113
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
We have previously shown that endothelin-1 (ET-1) modulates mechanical stretch-induced hypertrophic responses such as extracellular signal-regulated protein kinase (ERK) activation in cardiac myocytes. This study was undertaken to elucidate the ET-1 evoked signal transduction pathways leading to ERK activation. ET-1 was added to cultured cardiac myocytes of neonatal rats with or without a variety of inhibitors. ET-1 activated ERKs, which were followed by an increase in protein synthesis, and inhibition of protein kinase C activities by calphostin C completely suppressed the ET-1-induced ERK activation. We next examined whether tyrosine kinases or Ras are involved in ET-1-induced signaling pathways in cardiomyocytes. Pretreatment with a receptor tyrosine kinase inhibitor did not attenuate ET-1-induced activation of ERKs, Also, co-transfection of the dominant-negative mutant of Ras or active mutant of C-terminal Src kinase, a tyrosine kinase which inhibits Src family tyrosine kinases, with hemagglutinin-tagged ERK2 had no effects on ET-1-induced ERK2 activation. On the other hand, blockade of Raf-1 kinase function by overexpression of the dominant-negative mutant of Raf-1 kinase completely inhibited ET-1-induced ERK2 activation. These results suggest that protein kinase C and Raf-1 kinase, but not Src or Ras, are critical to ET-1-induced ERK activation in cardiac myocytes.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 50 条
[1]   CLONING AND EXPRESSION OF A CDNA-ENCODING AN ENDOTHELIN RECEPTOR [J].
ARAI, H ;
HORI, S ;
ARAMORI, I ;
OHKUBO, H ;
NAKANISHI, S .
NATURE, 1990, 348 (6303) :730-732
[2]   GROWTH REGULATORY PROPERTIES OF ENDOTHELINS [J].
BATTISTINI, B ;
CHAILLER, P ;
DORLEANSJUSTE, P ;
BRIERE, N ;
SIROIS, P .
PEPTIDES, 1993, 14 (02) :385-399
[3]   SIGNAL-TRANSDUCTION VIA THE MAP KINASES - PROCEED AT YOUR OWN RSK [J].
BLENIS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :5889-5892
[4]  
BOGOYEVITCH MA, 1994, J BIOL CHEM, V269, P1110
[5]   CAMP ANTAGONIZES P21(RAS)-DIRECTED ACTIVATION OF EXTRACELLULAR SIGNAL-REGULATED KINASE-2 AND PHOSPHORYLATION OF MSOS NUCLEOTIDE EXCHANGE FACTOR [J].
BURGERING, BMT ;
PRONK, GJ ;
VANWEEREN, PC ;
CHARDIN, P ;
BOS, JL .
EMBO JOURNAL, 1993, 12 (11) :4211-4220
[6]   Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimutated Rat-1 cells [J].
Cadwallader, K ;
Beltman, J ;
McCormick, F ;
Cook, S .
BIOCHEMICAL JOURNAL, 1997, 321 :795-804
[7]   INHIBITION BY CAMP OF RAS-DEPENDENT ACTIVATION OF RAF [J].
COOK, SJ ;
MCCORMICK, F .
SCIENCE, 1993, 262 (5136) :1069-1072
[8]   ACTIVATION OF MAP KINASE KINASE IS NECESSARY AND SUFFICIENT FOR PC12 DIFFERENTIATION AND FOR TRANSFORMATION OF NIH 3T3 CELLS [J].
COWLEY, S ;
PATERSON, H ;
KEMP, P ;
MARSHALL, CJ .
CELL, 1994, 77 (06) :841-852
[9]   Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors [J].
Daub, H ;
Weiss, FU ;
Wallasch, C ;
Ullrich, A .
NATURE, 1996, 379 (6565) :557-560
[10]   Mitogen-activated protein kinase phosphatase 1 inhibits the stimulation of gene expression by hypertrophic agonists in cardiac myocytes [J].
Fuller, SJ ;
Davies, EL ;
GillespieBrown, J ;
Sun, H ;
Tonks, NK .
BIOCHEMICAL JOURNAL, 1997, 323 :313-319