Numerical Modeling of the Disturbances of the Separated Flow in a Rounded Compression Corner

被引:25
作者
Egorov, I. V.
Novikov, A. V.
Fedorov, A. V.
机构
关键词
Navier-Stokes equations; supersonic flows; compression corner; separation flows; disturbances; boundary layer; numerical modeling;
D O I
10.1007/s10697-006-0070-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical modeling of the time-dependent supersonic flow over a compression corner with different roundness radii is performed on the basis of the solution of the two-dimensional Navier-Stokes equations in the regimes corresponding to local boundary layer separation. The development of unstable disturbances generated by local periodic injection/suction in the preseparated boundary layer is calculated. The results are compared with those of similar calculations for a flat plate. It is shown that the natural oscillations of the boundary-layer second mode stabilize in the separation zone and grow intensely downstream of the reattachment point. The acoustic modes excited within a separation bubble are studied using numerical calculations and an asymptotic analysis.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 15 条
[1]   ANALYSIS OF TWO-DIMENSIONAL INTERACTIONS BETWEEN SHOCK-WAVES AND BOUNDARY-LAYERS [J].
ADAMSON, TC ;
MESSITER, AF .
ANNUAL REVIEW OF FLUID MECHANICS, 1980, 12 :103-138
[2]  
[Anonymous], 2004, ASYMPTOTIC THEORY SU
[3]  
BALAKUMAR P, 2002, 2848 AIAA
[4]   Numerical conformal mapping using cross-ratios and Delaunay triangulation [J].
Driscoll, TA ;
Vavasis, SA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1783-1803
[5]   Numerical modeling of perturbation propagation in a supersonic boundary layer [J].
Egorov I.V. ;
Sudakov V.G. ;
Fedorov A.V. .
Fluid Dynamics, 2004, 39 (6) :874-884
[6]   Numerical Modeling of the Receptivity of a Supersonic Boundary Layer to Acoustic Disturbances [J].
Egorov, I. V. ;
Sudakov, V. G. ;
Fedorov, A. V. .
FLUID DYNAMICS, 2006, 41 (01) :37-48
[7]  
Fedorov A. V., 1991, Fluid Dynamics, V26, P531, DOI 10.1007/BF01050314
[8]   Prehistory of instability in a hypersonic boundary layer [J].
Fedorov, AV ;
Khokhlov, AP ;
Khokhlov, P .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2001, 14 (06) :359-375
[9]  
Fedoryuk M.V., 1983, Asymptotic Methods for Linear Ordinary Differential Equations
[10]  
Gaponov S.A., 1980, DISTURBANCE DEV COMP