The minimal work cost of information processing

被引:112
作者
Faist, Philippe [1 ]
Dupuis, Frederic [1 ,2 ,3 ]
Oppenheim, Jonathan [4 ]
Renner, Renato [1 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Aarhus Univ, Dept Comp Sci, DK-8200 Aarhus, Denmark
[3] Masaryk Univ, Fac Informat, Brno 61200, Czech Republic
[4] UCL, Dept Phys & Astron, London WC1E 6BT, England
基金
欧洲研究理事会; 瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
HEAT-GENERATION; MAXWELLS DEMON; QUANTUM; THERMODYNAMICS; COMPUTATION; PRINCIPLE; ERASURE; PHYSICS;
D O I
10.1038/ncomms8669
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Irreversible information processing cannot be carried out without some inevitable thermodynamical work cost. This fundamental restriction, known as Landauer's principle, is increasingly relevant today, as the energy dissipation of computing devices impedes the development of their performance. Here we determine the minimal work required to carry out any logical process, for instance a computation. It is given by the entropy of the discarded information conditional to the output of the computation. Our formula takes precisely into account the statistically fluctuating work requirement of the logical process. It enables the explicit calculation of practical scenarios, such as computational circuits or quantum measurements. On the conceptual level, our result gives a precise and operational connection between thermodynamic and information entropy, and explains the emergence of the entropy state function in macroscopic thermodynamics.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Truly work-like work extraction via a single-shot analysis [J].
Aberg, Johan .
NATURE COMMUNICATIONS, 2013, 4
[2]   Thermodynamics of quantum information systems - Hamiltonian description [J].
Alicki, R ;
Horodecki, ML ;
Horodecki, PL ;
Horodecki, R .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2004, 11 (03) :205-217
[3]   Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance [J].
Baugh, J ;
Moussa, O ;
Ryan, CA ;
Nayak, A ;
Laflamme, R .
NATURE, 2005, 438 (7067) :470-473
[4]   Notes on Landauer's principle, reversible computation, and Maxwell's Demon [J].
Bennett, CH .
STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2003, 34B (03) :501-510
[5]   THE THERMODYNAMICS OF COMPUTATION - A REVIEW [J].
BENNETT, CH .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (12) :905-940
[6]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[7]  
Bhatia R., 2013, Matrix Analysis
[8]   The second laws of quantum thermodynamics [J].
Brandao, Fernando ;
Horodecki, Michal ;
Ng, Nelly ;
Oppenheim, Jonathan ;
Wehner, Stephanie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3275-3279
[9]   Resource Theory of Quantum States Out of Thermal Equilibrium [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal ;
Oppenheim, Jonathan ;
Renes, Joseph M. ;
Spekkens, Robert W. .
PHYSICAL REVIEW LETTERS, 2013, 111 (25)
[10]   Global information balance in quantum measurements [J].
Buscemi, Francesco ;
Hayashi, Masahito ;
Horodecki, Michal .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)