Protecting Water Infrastructure From Cyber and Physical Threats Using multimodal data fusion and adaptive deep learning to monitor critical systems

被引:54
作者
Bakalos, Nikolaos [1 ]
Voulodimos, Athanasios [2 ]
Doulamis, Nikolaos [1 ]
Doulamis, Anastasios [1 ,3 ]
Ostfeld, Avi [4 ,5 ]
Salomons, Elad
Caubet, Juan [6 ,7 ]
Jimenez, Victor
Li, Pau
机构
[1] NTUA, Athens, Greece
[2] Univ West Att, Athens, Greece
[3] Tech Univ Crete, Khania, Greece
[4] Technion Israel Inst Technol, Haifa, Israel
[5] Technion Israel Inst Technol, Fac Civil & Environm Engn, Haifa, Israel
[6] Informat Technol Secur Unit Eurecat, Eurecat, Spain
[7] INRIA, Nancy Grand Est Res Ctr, Le Chesnay, France
基金
欧盟地平线“2020”;
关键词
SCADA; MODEL;
D O I
10.1109/MSP.2018.2885359
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Critical water infrastructure is susceptible to various types of major attacks, including direct, human-presence assaults and cyberattacks tampering with industrial control system (ICS) sensors and processes. As attacks become increasingly sophisticated and multifaceted, their timely detection becomes especially challenging and requires the exploitation of different data modalities, such as visual surveillance, channel state information (CSI) from Wi-Fi signals for human-presence detection, and ICS sensor data from the utility. © 1991-2012 IEEE.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 30 条
[1]   Trajectory-Based Surveillance Analysis: A Survey [J].
Ahmed, Sk Arif ;
Dogra, Debi Prosad ;
Kar, Samarjit ;
Roy, Partha Pratim .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (07) :1985-1997
[2]   Cyber Security of Water SCADA Systems-Part II: Attack Detection Using Enhanced Hydrodynamic Models [J].
Amin, Saurabh ;
Litrico, Xavier ;
Sastry, S. Shankar ;
Bayen, Alexandre M. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) :1679-1693
[3]  
COHEN G, 2018, ARXIV180506822
[4]   RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION [J].
CONNOR, JT ;
MARTIN, RD ;
ATLAS, LE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :240-254
[5]   THE IDENTIFICATION OF MULTIPLE OUTLIERS [J].
DAVIES, L ;
GATHER, U .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :782-792
[6]   An adaptable neural-network model for recursive nonlinear traffic prediction, and modeling of MPEG video sources [J].
Doulamis, AD ;
Doulamis, ND ;
Kollias, SD .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01) :150-166
[7]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[8]   Sensor Fusion Methodology for Vehicle Detection [J].
Garcia, Fernando ;
Martin, David ;
de la Escalera, Arturo ;
Maria Armingol, Jose .
IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2017, 9 (01) :123-133
[9]   Tool Release: Gathering 802.11n Traces with Channel State Information [J].
Halperin, Daniel ;
Hu, Wenjun ;
Sheth, Anmol ;
Wetherall, David .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (01) :53-53
[10]  
Herrero S., 2009, LECT NOTES COMPUTER, V5807