Global well-posedness of strong solutions with large oscillations and vacuum to the compressible Navier-Stokes-Poisson equations subject to large and non-flat doping profile

被引:15
作者
Liu, Shengquan [1 ]
Xu, Xinying [2 ]
Zhang, Jianwen [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110036, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
美国国家科学基金会;
关键词
Navier-Stokes-Poisson equations; Global strong solutions; Large non-flat doping profile; Large oscillations; Vacuum; WEAK SOLUTIONS; SMOOTH SOLUTIONS; EXISTENCE; BEHAVIOR; SYSTEM; FLOWS; DECAY;
D O I
10.1016/j.jde.2020.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns an initial value problem of compressible Navier-Stokes-Poisson equations subject to large and non-flat doping profile in whole space R-3 . The global well-posedness of strong solutions with large oscillations and vacuum is established, provided the initial data are of small energy and the steady state is strictly away from vacuum. A weak-strong uniqueness result is also obtained. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:8468 / 8508
页数:41
相关论文
共 33 条
[1]  
[Anonymous], 1975, Sobolev Spaces
[2]  
[Anonymous], 2012, Semiconductor equations
[3]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[4]   Well-posedness of the compressible Navier-Stokes-Poisson system in the critical Besov spaces [J].
Chikami, Noboru ;
Ogawa, Takayoshi .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (02) :717-747
[5]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[6]   Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J].
Choe, HJ ;
Kim, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :504-523
[7]   Local and global existence for the coupled Navier-Stokes-Poisson problem [J].
Donatelli, D .
QUARTERLY OF APPLIED MATHEMATICS, 2003, 61 (02) :345-361
[8]  
Ducomet B, 2004, DISCRETE CONT DYN-A, V11, P113
[9]   Global existence for compressible barotropic self-gravitating fluids [J].
Ducomet, B ;
Feireisl, E ;
Petzeltová, H ;
Straskraba, I .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07) :627-632
[10]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids